Search results

1 – 10 of 264
Article
Publication date: 18 January 2016

Ishaq Jarallah and Vasudevan P Kanjirakkad

This paper aims to offer the aerodynamic testing community a new procedure for manufacturing high-quality aerodynamic probes suitable for 3D flow measurements with consistent…

Abstract

Purpose

This paper aims to offer the aerodynamic testing community a new procedure for manufacturing high-quality aerodynamic probes suitable for 3D flow measurements with consistent geometry and calibration by taking advantage of the additive manufacturing technology.

Design/methodology/approach

The design methodology combines the advantages and flexibilities of computer aided design (CAD)/computer aided manufacturing (CAM) along with the use of computational fluid dynamics to design and analyse suitable probe shapes prior to manufacturing via rapid prototyping.

Findings

A viable procedure to design and possibly batch manufacture geometrically accurate pneumatic probes with consistent calibration is shown to be possible through this work. Multi-jet modelling prototyping methods with wax-based support materials are found to be a cost-effective method when clean and long sub-millimetre pressure channels are to be cut.

Originality/value

Utilisation of the geometry consistency that is made possible by 3D printing technology for the design and development of pneumatic probes is described. It is suggested that the technique could lead to batch production of identical probes, thus avoiding precious time of a skilled labourer and elaborate individual calibration requirement.

Details

Rapid Prototyping Journal, vol. 22 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 September 2021

Bilal Malik, Jehanzeb Masud and Suhail Akhtar

This paper aims to provide a detailed review of the experimental research on the prediction of aircraft spin and recovery characteristics using dynamically scaled aircraft models.

Abstract

Purpose

This paper aims to provide a detailed review of the experimental research on the prediction of aircraft spin and recovery characteristics using dynamically scaled aircraft models.

Design/methodology/approach

The paper organizes experimental techniques to predict aircraft spin and recovery characteristics into three broad categories: dynamic free-flight tests, dynamic force tests and a relatively novel technique called wind tunnel based virtual flight testing.

Findings

After a thorough review, usefulness, limitations and open problems in the presented techniques are highlighted to provide a useful reference to researchers. The area of application of each technique within the research scope of aircraft spin is also presented.

Originality/value

Previous reviews on the prediction of aircraft spin and recovery characteristics were published many years ago and also have confined scope as they address particular spin technologies. This paper attempts to provide a comprehensive review on the subject and fill the information void regarding the state of the art aircraft spin technologies.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 March 2016

Srinivas Vasista, Alessandro De Gaspari, Sergio Ricci, Johannes Riemenschneider, Hans Peter Monner and Bram van de Kamp

The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR…

1042

Abstract

Purpose

The purpose of this paper is to provide an overview of the design and experimental work of compliant wing and wingtip morphing devices conducted within the EU FP7 project NOVEMOR and to demonstrate that the optimization tools developed can be used to synthesize compliant morphing devices.

Design/methodology/approach

The compliant morphing devices were “designed-through-optimization”, with the optimization algorithms including Simplex optimization for composite compliant skin design, aerodynamic shape optimization able to take into account the structural behaviour of the morphing skin, continuum-based and load path representation topology optimization methods and multi-objective optimization coupled with genetic algorithm for compliant internal substructure design. Low-speed subsonic wind tunnel testing was performed as an effective means of demonstrating proof-of-concept.

Findings

It was found that the optimization tools could be successfully implemented in the manufacture and testing stage. Preliminary insight into the performance of the compliant structure has been made during the first wind tunnel tests.

Practical implications

The tools in this work further the development of morphing structures, which when implemented in aircraft have potential implications to environmentally friendlier aircrafts.

Originality/value

The key innovations in this paper include the development of a composite skin optimization tool for the design of highly 3D morphing wings and its ensuing manufacture process; the development of a continuum-based topology optimization tool for shape control design of compliant mechanisms considering the stiffness and displacement functions; the use of a superelastic material for the compliant mechanism; and wind tunnel validation of morphing wing devices based on compliant structure technology.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 88 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 January 1967

R. Richard Heppe and Channing R. Englebry

Development of the Lockheed supersonic transport has followed the basic philosophy that an advance in air travel in terms of speed and economics should be accompanied by similar…

Abstract

Development of the Lockheed supersonic transport has followed the basic philosophy that an advance in air travel in terms of speed and economics should be accompanied by similar advances in aeroplane safety and flying qualities. To achieve these objectives, Lockheed's SST design work has been concentrated for many years on the development of a fixed‐wing design. The present configuration—called a double delta—provides a simple high lift system with low wing loading, excellent low speed stability and control, and large favourable ground effects in landing, with inherent advances in operational simplicity and safety.

Details

Aircraft Engineering and Aerospace Technology, vol. 39 no. 1
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 30 January 2007

Altan Kayran

To provide a general review of the flight flutter test techniques utilized in aeroelastic stability flight testing of aircraft, and to highlight the key items involved in flight…

1816

Abstract

Purpose

To provide a general review of the flight flutter test techniques utilized in aeroelastic stability flight testing of aircraft, and to highlight the key items involved in flight flutter testing of aircraft, by emphasizing all the main information processed during the flutter stability verification based on flight test data.

Design/methodology/approach

Flight flutter test requirements are first reviewed by referencing the relevant civil and military specifications. Excitation systems utilized in flight flutter testing are overviewed by stating the relative advantages and disadvantages of each technique. Flight test procedures followed in a typical flutter flight testing is described for different air speed regimes. Modal estimation methods, both in frequency and time domain, used in flutter prediction are surveyed. Most common flight flutter prediction methods are reviewed. Finally, key considerations for successful flight flutter testing are noted by referencing the related literature.

Findings

Online, real time monitoring of flutter stability during flight testing is very crucial, if the flutter character is not known a priori. Techniques such as modal filtering can be used to uncouple response measurements to produce simplified single degree of freedom responses, which could then be analyzed with less sophisticated algorithms that are more able to run in real time. Frequency domain subspace identification methods combined with time‐frequency multiscale wavelet techniques are considered as the most promising modal estimation algorithms to be used in flight flutter testing.

Practical implications

This study gives concise but relevant information on the flight flutter stability verification of aircraft to the practicing engineer. The three important steps used in flight flutter testing; structural excitation, structural response measurement and stability prediction are introduced by presenting different techniques for each of the three important steps. Emphasis has been given to the practical advantages and disadvantages of each technique.

Originality/value

This paper offers a brief practical guide to all key items involved in flight flutter stability verification of aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 79 no. 2
Type: Research Article
ISSN: 0002-2667

Keywords

Open Access
Article
Publication date: 26 April 2022

Jingfeng Xie, Jun Huang, Lei Song, Jingcheng Fu and Xiaoqiang Lu

The typical approach of modeling the aerodynamics of an aircraft is to develop a complete database through testing or computational fluid dynamics (CFD). The database will be huge…

2029

Abstract

Purpose

The typical approach of modeling the aerodynamics of an aircraft is to develop a complete database through testing or computational fluid dynamics (CFD). The database will be huge if it has a reasonable resolution and requires an unacceptable CFD effort during the conceptional design. Therefore, this paper aims to reduce the computing effort required via establishing a general aerodynamic model that needs minor parameters.

Design/methodology/approach

The model structure was a preconfigured polynomial model, and the parameters were estimated with a recursive method to further reduce the calculation effort. To uniformly disperse the sample points through each step, a unique recursive sampling method based on a Voronoi diagram was presented. In addition, a multivariate orthogonal function approach was used.

Findings

A case study of a flying wing aircraft demonstrated that generating a model with acceptable precision (0.01 absolute error or 5% relative error) costs only 1/54 of the cost of creating a database. A series of six degrees of freedom flight simulations shows that the model’s prediction was accurate.

Originality/value

This method proposed a new way to simplify the model and recursive sampling. It is a low-cost way of obtaining high-fidelity models during primary design, allowing for more precise flight dynamics analysis.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 11
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 December 2004

George K. Stylios

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects…

3545

Abstract

Examines the tenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 16 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 1 December 1960

The design of the D.558 Skystreak in 1944 involved a full monocoque magnesium fuselage and there was a fear that a high‐temperature jet exhaust impinging on the structure might be…

Abstract

The design of the D.558 Skystreak in 1944 involved a full monocoque magnesium fuselage and there was a fear that a high‐temperature jet exhaust impinging on the structure might be unsafe. Tests in fact showed that magnesium due to its higher thermal diffusivity was safer than aluminium. Testing techniques for elevated temperature structures encompass a new field and as the methods of performing the tests have not become standardized, a wide variety of methods are being tried. A description of tests using the various methods tried by the authors of this paper are presented together with the reasons why the particular methods were chosen. Methods include a bank of furnace‐type gas burners, resistance heating techniques, heat blankets, lamp radiation and the Andersometer. Solar furnaces, shock tunnels, magnetohydrodynamic devices, plasma jets, etc., can be ruled out as the dimensions of the test article would be far too limited. Induction heating closely approximates the conditions encountered during aerodynamic heating, but cost and bulk of apparatus become a serious problem.

Details

Aircraft Engineering and Aerospace Technology, vol. 32 no. 12
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 4 September 2017

Ewa Cichocka

The paper focuses on the evaluation of a light aircraft spin. The main purpose of this paper is to achieve reliable mathematical models of aircraft motion beyond stall conditions…

Abstract

Purpose

The paper focuses on the evaluation of a light aircraft spin. The main purpose of this paper is to achieve reliable mathematical models of aircraft motion beyond stall conditions to subsequently predict spin properties based on calculation only. Another vitally significant objective is to verify whether the aerodynamic characteristics determined numerically are coherent with the wind tunnel measurements performed on the dynamically scaled aircraft models.

Design/methodology/approach

The analysis was carried out for two certified conventional light aircraft. The first part of the investigation is devoted to the verification of the simplified methods used to identify the aircraft recoverability from spinning steady-state turns and estimate the primary post-stall flight parameters. Then, the spin simulations were executed. The computational results were thereafter compared with the in-flight data recordings.

Findings

The study confirms the coincidence between the calculated spinning behaviour and the observed aircraft response during the flight tests. The mathematical models of aircraft spatial motion have been found to be credible for predicting spin properties. The simplified methods are reliable to determine the basic spin performance of light aircraft at the preliminary design stage, whereas the spin simulations enable recognition and comprehensive examination of all spin modes.

Practical implications

The outcomes of conducted calculation and comparisons of computational spin properties with flight test recordings have indicated that the qualitative assessment of spinning motion is enabled at each stage of the designing process.

Originality/value

The paper involves the comparison of the computational results with the recordings of spin in-flight tests and the correlation between calculated and experimentally obtained aerodynamics of light aircraft.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 6 July 2010

A. Arun Kumar, S.R. Viswamurthy and R. Ganguli

This paper aims to validate a comprehensive aeroelastic analysis for a helicopter rotor with the higher harmonic control aeroacoustic rotor test (HART‐II) wind tunnel test data.

Abstract

Purpose

This paper aims to validate a comprehensive aeroelastic analysis for a helicopter rotor with the higher harmonic control aeroacoustic rotor test (HART‐II) wind tunnel test data.

Design/methodology/approach

Aeroelastic analysis of helicopter rotor with elastic blades based on finite element method in space and time and capable of considering higher harmonic control inputs is carried out. Moderate deflection and coriolis nonlinearities are included in the analysis. The rotor aerodynamics are represented using free wake and unsteady aerodynamic models.

Findings

Good correlation between analysis and HART‐II wind tunnel test data is obtained for blade natural frequencies across a range of rotating speeds. The basic physics of the blade mode shapes are also well captured. In particular, the fundamental flap, lag and torsion modes compare very well. The blade response compares well with HART‐II result and other high‐fidelity aeroelastic code predictions for flap and torsion mode. For the lead‐lag response, the present analysis prediction is somewhat better than other aeroelastic analyses.

Research limitations/implications

Predicted blade response trend with higher harmonic pitch control agreed well with the wind tunnel test data, but usually contained a constant offset in the mean values of lead‐lag and elastic torsion response. Improvements in the modeling of the aerodynamic environment around the rotor can help reduce this gap between the experimental and numerical results.

Practical implications

Correlation of predicted aeroelastic response with wind tunnel test data is a vital step towards validating any helicopter aeroelastic analysis. Such efforts lend confidence in using the numerical analysis to understand the actual physical behavior of the helicopter system. Also, validated numerical analyses can take the place of time‐consuming and expensive wind tunnel tests during the initial stage of the design process.

Originality/value

While the basic physics appears to be well captured by the aeroelastic analysis, there is need for improvement in the aerodynamic modeling which appears to be the source of the gap between numerical predictions and HART‐II wind tunnel experiments.

Details

Aircraft Engineering and Aerospace Technology, vol. 82 no. 4
Type: Research Article
ISSN: 0002-2667

Keywords

1 – 10 of 264