Search results

1 – 10 of 118
Article
Publication date: 15 December 2022

Xuesong Wang, Jinju Sun, Ernesto Benini, Peng Song and Youwei He

This study aims to use computational fluid dynamics (CFD) to understand and quantify the overall blockage within a transonic axial flow compressor (AFC), and to develop an…

Abstract

Purpose

This study aims to use computational fluid dynamics (CFD) to understand and quantify the overall blockage within a transonic axial flow compressor (AFC), and to develop an efficient collaborative design optimization method for compressor aerodynamic performance and stability in conjunction with a surrogate-assisted optimization technique.

Design/methodology/approach

A quantification method for the overall blockage is developed to integrate the effect of regional blockages on compressor aerodynamic stability and performance. A well-defined overall blockage factor combined with efficiency drives the optimizer to seek the optimum blade designs with both high efficiency and wide-range stability. An adaptive Kriging-based optimization technique is adopted to efficiently search for Pareto front solutions. Steady and unsteady numerical simulations are used for the performance and flow field analysis of the datum and optimum designs.

Findings

The proposed method not only remarkably improves the compressor efficiency but also significantly enhances the compressor operating stability with fewer CFD calls. These achievements are mainly attributed to the improvement of specific flow behaviors oriented by the objectives, including the attenuation of the shock and weakening of the tip leakage flow/shock interaction intensity.

Originality/value

CFD-based design optimization of AFC is inherently time-consuming, which becomes even trickier when optimizing aerodynamic stability since the stall margin relies on a complete simulation of the performance curve. The proposed method could be a good solution to the collaborative design optimization of aerodynamic performance and stability for transonic AFC.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 March 2023

Jiahao Zhu, Guohua Xu and Yongjie Shi

This paper aims to develop a new method of fuselage drag optimization that can obtain results faster than the conventional methods based on full computational fluid dynamics (CFD…

Abstract

Purpose

This paper aims to develop a new method of fuselage drag optimization that can obtain results faster than the conventional methods based on full computational fluid dynamics (CFD) calculations and can be used to improve the efficiency of preliminary design.

Design/methodology/approach

An efficient method for helicopter fuselage shape optimization based on surrogate-based optimization is presented. Two numerical simulation methods are applied in different stages of optimization according to their relative advantages. The fast panel method is used to calculate the sample data to save calculation time for a large number of sample points. The initial solution is obtained by combining the Kriging surrogate model and the multi-island genetic algorithm. Then, the accuracy of the solution is determined by using the infill criteria based on CFD corrections. A parametric model of the fuselage is established by several characteristic sections and guiding curves.

Findings

It is demonstrated that this method can greatly reduce the calculation time while ensuring a high accuracy in the XH-59A helicopter example. The drag coefficient of the optimized fuselage is reduced by 13.3%. Because of the use of different calculation methods for samples, this novel method reduces the total calculation time by almost fourfold compared with full CFD calculations.

Originality/value

To the best of the authors’ knowledge, this is the first study to provide a novel method of fuselage drag optimization by combining different numerical simulation methods. Some suggestions on fuselage shape optimization are given for the XH-59A example.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 13 December 2023

Ying-Jie Guan and Yong-Ping Li

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately…

Abstract

Purpose

To solve the shortcomings of existed search and rescue drones, search and rescue the trapped people trapped in earthquake ruins, underwater and avalanches quickly and accurately, this paper aims to propose a four-axis eight-rotor rescue unmanned aerial vehicle (UAV) which can carry a radar life detector. As the design of propeller is the key to the design of UAV, this paper mainly designs the propeller of the UAV at the present stage.

Design/methodology/approach

Based on the actual working conditions of UAVs, this paper preliminarily estimated the load of UAVs and the diameters of propellers and designed the main parameters of propellers according to the leaf element theory and momentum theory. Based on the low Reynolds number airfoil, this paper selected the airfoil with high lift drag ratio from the commonly used low Reynolds number airfoils. The chord length and twist angle of propeller blades were calculated according to the Wilson method and the maximum wind energy utilization coefficient and were optimized by the Asymptotic exponential function. The aerodynamic characteristics of the designed single propeller and coaxial propeller under different installation pitch angles and different installation distances were analyzed.

Findings

The results showed that the design of coaxial twin propellers can increase the load capacity by about 1.5 times without increasing the propeller diameter. When the installation distance between the two propellers was 8 cm and the tilt angle was 15° counterclockwise, the aerodynamic characteristics of the coaxial propeller were optimal.

Originality/value

The novelty of this work came from the conceptual design of the new rescue UAV and its numerical optimization using the Wilson method combined with the maximum wind energy utilization factor and the exponential function. The aerodynamic characteristics of the common shaft propeller were analyzed under different mounting angles and different mounting distances.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 September 2023

Rossana Fernandes, Benyang Hu, Zhichao Wang, Zheng Zhang and Ali Y. Tamijani

This paper aims to assess the feasibility of additively manufactured wind tunnel models. The additively manufactured model was used to validate a computational framework allowing…

Abstract

Purpose

This paper aims to assess the feasibility of additively manufactured wind tunnel models. The additively manufactured model was used to validate a computational framework allowing the evaluation of the performance of five wing models.

Design/methodology/approach

An optimized fighter wing was additively manufactured and tested in a low-speed wind tunnel to obtain the aerodynamic coefficients and deflections at different speeds and angles of attack. The flexible wing model with optimized curvilinear spars and ribs was used to validate a finite element framework that was used to study the aeroelastic performance of five wing models. As a computationally efficient optimization method, homogenization-based topology optimization was used to generate four different lattice internal structures for the wing in this study. The efficiency of the spline-based optimization used for the spar-rib model and the lattice-based optimization used for the other four wings were compared.

Findings

The aerodynamic loads and displacements obtained experimentally and computationally were in good agreement, proving that additive manufacture can be used to create complex accurate models. The study also shows the efficiency of the homogenization-based topology optimization framework in generating designs with superior stiffness.

Originality/value

To the best of the authors’ knowledge, this is the first time a wing model with curvilinear spars and ribs was additively manufactured as a single piece and tested in a wind tunnel. This research also demonstrates the efficiency of homogenization-based topology optimization in generating enhanced models of different complexity.

Details

Rapid Prototyping Journal, vol. 30 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 1 June 2023

Marcin Figat and Agnieszka Kwiek

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced…

1611

Abstract

Purpose

Tandem wing aircrafts belong to an unconventional configurations group, and this type of design is characterised by a strong aerodynamic coupling, which results in lower induced drag. The purpose of this paper is to determine whether a certain trend in the wingspan impact on aircraft dynamic stability can be identified. The secondary goal was to compare the response to control of flaps placed on a front and rear wing.

Design/methodology/approach

The aerodynamic data and control derivatives were obtained from the computational fluid dynamics computations performed by the MGAERO software. The equations of aircraft longitudinal motion in a state space form were used. The equations were built based on the aerodynamic coefficients, stability and control derivatives. The analysis of the dynamic stability was done in the MATLAB by solving the eigenvalue problem. The response to control was computed by the step response method using MATLAB.

Findings

The results of this study showed that because of a strong aerodynamic coupling, a nonlinear relation between the wing size and aircraft dynamic stability proprieties was observed. In the case of the flap deflection, stronger oscillation was observed for the front flap.

Originality/value

Results of dynamic stability of aircraft in the tandem wing configuration can be found in the literature, but those studies show outcomes of a single configuration, while this paper presents a comprehensive investigation into the impact of wingspan on aircraft dynamic stability. The results reveal that because of a strong aerodynamic coupling, the relation between the span factor and dynamic stability is nonlinear. Also, it has been demonstrated that the configuration of two wings with the same span is not the optimal one from the aerodynamic point of view.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 23 October 2023

Shengxian Huang, Huihe Qiu and Ying Wang

Since most of the existing literature do not disclose the node coordinate data of its fixed-wing aircraft airfoil, in order to develop and obtain a practical and suitable…

Abstract

Purpose

Since most of the existing literature do not disclose the node coordinate data of its fixed-wing aircraft airfoil, in order to develop and obtain a practical and suitable deformation airfoil for fixed-wing micro air vehicle (MAV), this paper proposes an improved airfoil design method of fixed-wing MAV based on the profile data of S5010 airfoil.

Design/methodology/approach

Combined with the body shape variation of the stingray in the propulsion process, the parametric study of the aerodynamic shape of the original design airfoil is carried out to explore the influence of a single parameter change on the aerodynamic performance of the airfoil. Then, according to the influence law of single parameter variation on the aerodynamic performance of the airfoil, the original airfoil is synthetically deformed by changing multiple parameters.

Findings

By comparing the aerodynamic performance of the multi-parameter deformed airfoil with the original airfoil, it is found that the lift coefficient of the multi-parameter deformed airfoil changes from negative to positive value when AOA = 0°. When AOA = 2°, the lift coefficient growth rate is the largest, which is 47.27%, and the lift-to-drag ratio is increased by 50.00%. At other angles of attack, the lift, drag, and torque coefficients of the multi-parameter deformed airfoil are optimized to some extent.

Originality/value

Combined the body shape variation of the stingray in the propulsion process, the parametric study of the aerodynamic shape of the original design airfoil is carried out to explore the influence of a single parameter change on the aerodynamic performance of the airfoil.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 9 November 2023

Jianbin Luo, Yuanhao Tie, Ke Mi, Yajuan Pan, Lifei Tang, Yuan Li, Hongxiang Xu, Zhonghang Liu, Mingsen Li and Chunmei Jiang

The purpose of this paper is to investigate the optimal average drag coefficient of the Ahmed body for mixed platoon driving under crosswind and no crosswind conditions using the…

Abstract

Purpose

The purpose of this paper is to investigate the optimal average drag coefficient of the Ahmed body for mixed platoon driving under crosswind and no crosswind conditions using the response surface optimization method. This study has extraordinary implications for the planning of future intelligent transportation.

Design/methodology/approach

First, the single vehicle and vehicle platoon models are validated. Second, the configuration with the lowest average drag coefficient under the two conditions is obtained by response surface optimization. At the same time, the aerodynamic characteristics of the mixed platoon driving under different conditions are also analyzed.

Findings

The configuration with the lowest average drag coefficient under no crosswind conditions is 0.3 L for longitudinal spacing and 0.8 W for lateral spacing, with an average drag coefficient of 0.1931. The configuration with the lowest average drag coefficient under crosswind conditions is 10° for yaw angle, 0.25 L for longitudinal spacing, and 0.8 W for lateral spacing, with an average drag coefficient of 0.2251. Compared to the single vehicle, the average drag coefficients for the two conditions are reduced by 25.1% and 41.3%, respectively.

Originality/value

This paper investigates the lowest average drag coefficient for mixed platoon driving under no crosswind and crosswind conditions using a response surface optimization method. The computational fluid dynamics (CFD) results of single vehicle and vehicle platoon are compared and verified with the experimental results to ensure the reliability of this study. The research results provide theoretical reference and guidance for the planning of intelligent transportation.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 29 March 2024

Tugrul Oktay and Yüksel Eraslan

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design…

Abstract

Purpose

The purpose of this paper is to improve autonomous flight performance of a fixed-wing unmanned aerial vehicle (UAV) via simultaneous morphing wingtip and control system design conducted with optimization, computational fluid dynamics (CFD) and machine learning approaches.

Design/methodology/approach

The main wing of the UAV is redesigned with morphing wingtips capable of dihedral angle alteration by means of folding. Aircraft dynamic model is derived as equations depending only on wingtip dihedral angle via Nonlinear Least Squares regression machine learning algorithm. Data for the regression analyses are obtained by numerical (i.e. CFD) and analytical approaches. Simultaneous perturbation stochastic approximation (SPSA) is incorporated into the design process to determine the optimal wingtip dihedral angle and proportional-integral-derivative (PID) coefficients of the control system that maximizes autonomous flight performance. The performance is defined in terms of trajectory tracking quality parameters of rise time, settling time and overshoot. Obtained optimal design parameters are applied in flight simulations to test both longitudinal and lateral reference trajectory tracking.

Findings

Longitudinal and lateral autonomous flight performances of the UAV are improved by redesigning the main wing with morphing wingtips and simultaneous estimation of PID coefficients and wingtip dihedral angle with SPSA optimization.

Originality/value

This paper originally discusses the simultaneous design of innovative morphing wingtip and UAV flight control system for autonomous flight performance improvement. The proposed simultaneous design idea is conducted with the SPSA optimization and a machine learning algorithm as a novel approach.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 9 August 2023

Jie Zhang, Yuwei Wu, Jianyong Gao, Guangjun Gao and Zhigang Yang

This study aims to explore the formation mechanism of aerodynamic noise of a high-speed maglev train and understand the characteristics of dipole and quadrupole sound sources of…

360

Abstract

Purpose

This study aims to explore the formation mechanism of aerodynamic noise of a high-speed maglev train and understand the characteristics of dipole and quadrupole sound sources of the maglev train at different speed levels.

Design/methodology/approach

Based on large eddy simulation (LES) method and Kirchhoff–Ffowcs Williams and Hawkings (K-FWH) equations, the characteristics of dipole and quadrupole sound sources of maglev trains at different speed levels were simulated and analyzed by constructing reasonable penetrable integral surface.

Findings

The spatial disturbance resulting from the separation of the boundary layer in the streamlined area of the tail car is the source of aerodynamic sound of the maglev train. The dipole sources of the train are mainly distributed around the radio terminals of the head and tail cars of the maglev train, the bottom of the arms of the streamlined parts of the head and tail cars and the nose tip area of the streamlined part of the tail car, and the quadrupole sources are mainly distributed in the wake area. When the train runs at three speed levels of 400, 500 and 600 km·h−1, respectively, the radiated energy of quadrupole source is 62.4%, 63.3% and 71.7%, respectively, which exceeds that of dipole sources.

Originality/value

This study can help understand the aerodynamic noise characteristics generated by the high-speed maglev train and provide a reference for the optimization design of its aerodynamic shape.

Details

Railway Sciences, vol. 2 no. 3
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 8 January 2024

Tong-Tong Lin, Ming-Zhi Yang, Lei Zhang, Tian-Tian Wang, Yu Tao and Sha Zhong

The aerodynamic differences between the head car (HC) and tail car (TC) of a high-speed maglev train are significant, resulting in control difficulties and safety challenges in…

Abstract

Purpose

The aerodynamic differences between the head car (HC) and tail car (TC) of a high-speed maglev train are significant, resulting in control difficulties and safety challenges in operation. The arch structure has a significant effect on the improvement of the aerodynamic lift of the HC and TC of the maglev train. Therefore, this study aims to investigate the effect of a streamlined arch structure on the aerodynamic performance of a 600 km/h maglev train.

Design/methodology/approach

Three typical streamlined arch structures for maglev trains are selected, i.e. single-arch, double-arch and triple-arch maglev trains. The vortex structure, pressure of train surface, boundary layer, slipstream and aerodynamic forces of the maglev trains with different arch structures are compared by adopting improved delayed detached eddy simulation numerical calculation method. The effects of the arch structures on the aerodynamic performance of the maglev train are analyzed.

Findings

The dynamic topological structure of the wake flow shows that a change in arch structure can reduce the vortex size in the wake region; the vortex size with double-arch and triple-arch maglev trains is reduced by 15.9% and 23%, respectively, compared with a single-arch maglev train. The peak slipstream decreases with an increase in arch structures; double-arch and triple-arch maglev trains reduce it by 8.89% and 16.67%, respectively, compared with a single-arch maglev train. The aerodynamic force indicates that arch structures improve the lift imbalance between the HC and TC of a maglev train; double-arch and triple-arch maglev trains improve it by 22.4% and 36.8%, respectively, compared to a single-arch maglev train.

Originality/value

This study compares the effects of a streamlined arch structure on a maglev train and its surrounding flow field. The results of the study provide data support for the design and safe operation of high-speed maglev trains.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 118