Search results

1 – 3 of 3
Article
Publication date: 18 May 2023

Rongen Yan, Depeng Dang, Hu Gao, Yan Wu and Wenhui Yu

Question answering (QA) answers the questions asked by people in the form of natural language. In the QA, due to the subjectivity of users, the questions they query have different…

Abstract

Purpose

Question answering (QA) answers the questions asked by people in the form of natural language. In the QA, due to the subjectivity of users, the questions they query have different expressions, which increases the difficulty of text retrieval. Therefore, the purpose of this paper is to explore new query rewriting method for QA that integrates multiple related questions (RQs) to form an optimal question. Moreover, it is important to generate a new dataset of the original query (OQ) with multiple RQs.

Design/methodology/approach

This study collects a new dataset SQuAD_extend by crawling the QA community and uses word-graph to model the collected OQs. Next, Beam search finds the best path to get the best question. To deeply represent the features of the question, pretrained model BERT is used to model sentences.

Findings

The experimental results show three outstanding findings. (1) The quality of the answers is better after adding the RQs of the OQs. (2) The word-graph that is used to model the problem and choose the optimal path is conducive to finding the best question. (3) Finally, BERT can deeply characterize the semantics of the exact problem.

Originality/value

The proposed method can use word-graph to construct multiple questions and select the optimal path for rewriting the question, and the quality of answers is better than the baseline. In practice, the research results can help guide users to clarify their query intentions and finally achieve the best answer.

Details

Data Technologies and Applications, vol. 58 no. 1
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 13 March 2024

Rong Jiang, Bin He, Zhipeng Wang, Xu Cheng, Hongrui Sang and Yanmin Zhou

Compared with traditional methods relying on manual teaching or system modeling, data-driven learning methods, such as deep reinforcement learning and imitation learning, show…

Abstract

Purpose

Compared with traditional methods relying on manual teaching or system modeling, data-driven learning methods, such as deep reinforcement learning and imitation learning, show more promising potential to cope with the challenges brought by increasingly complex tasks and environments, which have become the hot research topic in the field of robot skill learning. However, the contradiction between the difficulty of collecting robot–environment interaction data and the low data efficiency causes all these methods to face a serious data dilemma, which has become one of the key issues restricting their development. Therefore, this paper aims to comprehensively sort out and analyze the cause and solutions for the data dilemma in robot skill learning.

Design/methodology/approach

First, this review analyzes the causes of the data dilemma based on the classification and comparison of data-driven methods for robot skill learning; Then, the existing methods used to solve the data dilemma are introduced in detail. Finally, this review discusses the remaining open challenges and promising research topics for solving the data dilemma in the future.

Findings

This review shows that simulation–reality combination, state representation learning and knowledge sharing are crucial for overcoming the data dilemma of robot skill learning.

Originality/value

To the best of the authors’ knowledge, there are no surveys that systematically and comprehensively sort out and analyze the data dilemma in robot skill learning in the existing literature. It is hoped that this review can be helpful to better address the data dilemma in robot skill learning in the future.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 27 February 2024

Shefali Arora, Ruchi Mittal, Avinash K. Shrivastava and Shivani Bali

Deep learning (DL) is on the rise because it can make predictions and judgments based on data that is unseen. Blockchain technologies are being combined with DL frameworks in…

Abstract

Purpose

Deep learning (DL) is on the rise because it can make predictions and judgments based on data that is unseen. Blockchain technologies are being combined with DL frameworks in various industries to provide a safe and effective infrastructure. The review comprises literature that lists the most recent techniques used in the aforementioned application sectors. We examine the current research trends across several fields and evaluate the literature in terms of its advantages and disadvantages.

Design/methodology/approach

The integration of blockchain and DL has been explored in several application domains for the past five years (2018–2023). Our research is guided by five research questions, and based on these questions, we concentrate on key application domains such as the usage of Internet of Things (IoT) in several applications, healthcare and cryptocurrency price prediction. We have analyzed the main challenges and possibilities concerning blockchain technologies. We have discussed the methodologies used in the pertinent publications in these areas and contrasted the research trends during the previous five years. Additionally, we provide a comparison of the widely used blockchain frameworks that are used to create blockchain-based DL frameworks.

Findings

By responding to five research objectives, the study highlights and assesses the effectiveness of already published works using blockchain and DL. Our findings indicate that IoT applications, such as their use in smart cities and cars, healthcare and cryptocurrency, are the key areas of research. The primary focus of current research is the enhancement of existing systems, with data analysis, storage and sharing via decentralized systems being the main motivation for this integration. Amongst the various frameworks employed, Ethereum and Hyperledger are popular among researchers in the domain of IoT and healthcare, whereas Bitcoin is popular for research on cryptocurrency.

Originality/value

There is a lack of literature that summarizes the state-of-the-art methods incorporating blockchain and DL in popular domains such as healthcare, IoT and cryptocurrency price prediction. We analyze the existing research done in the past five years (2018–2023) to review the issues and emerging trends.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

1 – 3 of 3