Search results

1 – 10 of 31
Article
Publication date: 3 July 2017

Appanah Rao Appadu

An unconditionally positive definite finite difference scheme termed as UPFD has been derived to approximate a linear advection-diffusion-reaction equation which models…

Abstract

Purpose

An unconditionally positive definite finite difference scheme termed as UPFD has been derived to approximate a linear advection-diffusion-reaction equation which models exponential travelling waves and the coefficients of advection, diffusion and reactive terms have been chosen as one (Chen-Charpentier and Kojouharov, 2013). In this work, the author tests UPFD scheme under some other different regimes of advection, diffusion and reaction. The author considers the case when the coefficient of advection, diffusion and reaction are all equal to one and also cases under which advection or diffusion or reaction is more important. Some errors such as L1 error, dispersion, dissipation errors and relative errors are tabulated. Moreover, the author compares some spectral properties of the method under different regimes. The author obtains the variation of the following quantities with respect to the phase angle: modulus of exact amplification factor, modulus of amplification factor of the scheme and relative phase error.

Design/methodology/approach

Difficulties can arise in stability analysis. It is important to have a full understanding of whether the conditions obtained for stability are sufficient, necessary or necessary and sufficient. The advection-diffusion-reaction is quite similar to the advection-diffusion equation, it has an extra reaction term and therefore obtaining stability of numerical methods discretizing advection-diffusion-reaction equation is not easy as is the case with numerical methods discretizing advection-diffusion equations. To avoid difficulty involved with obtaining region of stability, the author shall consider unconditionally stable finite difference schemes discretizing advection-diffusion-reaction equations.

Findings

The UPFD scheme is unconditionally stable but not unconditionally consistent. The scheme was tested on an advection-diffusion-reaction equation which models exponential travelling waves, and the author computed various errors such as L1 error, dispersion and dissipation errors, relative errors under some different regimes of advection, diffusion and reaction. The scheme works best for very small values of k as k → 0 (for instance, k = 0.00025, 0.0005) and performs satisfactorily at other values of k such as 0.001 for two regimes; a = 1, D = 1, κ = 1 and a = 1, D = 1, κ = 5. When a = 5, D = 1, κ = 1, the scheme performs quite well at k = 0.00025 and satisfactorily at k = 0.0005 but is not efficient at larger values of k. For the diffusive case (a = 1, D = 5, κ = 1), the scheme does not perform well. In general, the author can conclude that the choice of k is very important, as it affects to a great extent the performance of the method.

Originality/value

The UPFD scheme is effective to solve advection-diffusion-reaction problems when advection or reactive regime is dominant and for the case, a = 1, D = 1, κ = 1, especially at low values of k. Moreover, the magnitude of the dispersion and dissipation errors using UPFD are of the same order for all the four regimes considered as seen from Tables 1 to 4. This indicates that if the author is to optimize the temporal step size at a given value of the spatial step size, the optimization function must consist of both the AFM and RPE. Some related work on optimization can be seen in Appadu (2013). Higher-order unconditionally stable schemes can be constructed for the regimes for which UPFD is not efficient enough for instance when advection and diffusion are dominant.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 May 2018

Ram Jiwari, Stefania Tomasiello and Francesco Tornabene

This paper aims to capture the effective behaviour of nonlinear coupled advection-diffusion-reaction systems and develop a new computational scheme based on differential…

Abstract

Purpose

This paper aims to capture the effective behaviour of nonlinear coupled advection-diffusion-reaction systems and develop a new computational scheme based on differential quadrature method.

Design/methodology/approach

The developed scheme converts the coupled system into a system of ordinary differential equations. Finally, the obtained system is solved by a four-stage RK4 scheme.

Findings

The developed scheme helped to capture the different types of patterns of nonlinear time-dependent coupled advection-diffusion-reaction systems such as Brusselator model, Chemo-taxis model and linear model which are similar to the existing patterns of the models.

Originality/value

The originality lies in the fact that the developed scheme is new for coupled advection-diffusion-reaction systems such as Brusselator model, Chemo-taxis model and linear models. Second, the captured pattern is similar to the existing patterns of the models.

Article
Publication date: 23 August 2021

Hamid Mesgarani, Mahya Kermani and Mostafa Abbaszadeh

The purpose of this study is to use the method of lines to solve the two-dimensional nonlinear advection–diffusion–reaction equation with variable coefficients.

Abstract

Purpose

The purpose of this study is to use the method of lines to solve the two-dimensional nonlinear advection–diffusion–reaction equation with variable coefficients.

Design/methodology/approach

The strictly positive definite radial basis functions collocation method together with the decomposition of the interpolation matrix is used to turn the problem into a system of nonlinear first-order differential equations. Then a numerical solution of this system is computed by changing in the classical fourth-order Runge–Kutta method as well.

Findings

Several test problems are provided to confirm the validity and efficiently of the proposed method.

Originality/value

For the first time, some famous examples are solved by using the proposed high-order technique.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 November 2018

Utku Erdogan, Murat Sari and Huseyin Kocak

The purpose of this study is to propose a non-classical method to obtain efficient and accurate numerical solutions of the advection–diffusion–reaction equations.

Abstract

Purpose

The purpose of this study is to propose a non-classical method to obtain efficient and accurate numerical solutions of the advection–diffusion–reaction equations.

Design/methodology/approach

Unlike conventional numerical methods, this study proposes a numerical scheme using outer Newton iteration applied to a time-dependent PDE. The linearized time dependent PDE is discretized by trapezoidal rule, which is second order in time, and by spline-based finite difference method of fourth order in space.

Findings

Using the proposed technique, even when relatively large time step sizes are used in computations, the efficiency of the proposed procedure is very clear for the numerical examples in comparison with the existing classical methods.

Originality/value

This study, unlike these classical methods, proposes an alternative approach based on linearizing the nonlinear problem at first, and then discretizing it by an appropriate scheme. This technique helps to avoid considering the convergence issues of Newton iteration applied to nonlinear algebraic system containing many unknowns at each time step if an implicit method is used in time discretization. The linearized PDE can be solved by implicit time integrator, which enables the use of large time step size.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 August 2021

Huseyin Tunc and Murat Sari

The purpose of this article is to derive an implicit-explicit local differential transform method (IELDTM) in dealing with the spatial approximation of the stiff…

Abstract

Purpose

The purpose of this article is to derive an implicit-explicit local differential transform method (IELDTM) in dealing with the spatial approximation of the stiff advection-diffusion-reaction (ADR) equations.

Design/methodology/approach

A direction-free numerical approach based on local Taylor series representations is designed for the ADR equations. The differential equations are directly used for determining the local Taylor coefficients and the required degrees of freedom is minimized. The complete system of algebraic equations is constructed with explicit/implicit continuity relations with respect to direction parameter. Time integration of the ADR equations is continuously utilized with the Chebyshev spectral collocation method.

Findings

The IELDTM is proven to be a robust, high order, stability preserved and versatile numerical technique for spatial discretization of the stiff partial differential equations (PDEs). It is here theoretically and numerically shown that the order refinement (p-refinement) procedure of the IELDTM does not affect the degrees of freedom, and thus the IELDTM is an optimum numerical method. A priori error analysis of the proposed algorithm is done, and the order conditions are determined with respect to the direction parameter.

Originality/value

The IELDTM overcomes the known disadvantages of the differential transform-based methods by providing reliable convergence properties. The IELDTM is not only improving the existing Taylor series-based formulations but also provides several advantages over the finite element method (FEM) and finite difference method (FDM). The IELDTM offers better accuracy, even when using far less degrees of freedom, than the FEM and FDM. It is proven that the IELDTM produces solutions for the advection-dominated cases with the optimum degrees of freedom without producing an undesirable oscillation.

Details

Engineering Computations, vol. 39 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2005

Alessandro Corsini, Franco Rispoli and Andrea Santoriello

An original finite element scheme for advection‐diffusion‐reaction problems is presented. The new method, called spotted Petrov‐Galerkin (SPG), is a quadratic Petrov‐Galerkin (PG…

Abstract

Purpose

An original finite element scheme for advection‐diffusion‐reaction problems is presented. The new method, called spotted Petrov‐Galerkin (SPG), is a quadratic Petrov‐Galerkin (PG) formulation developed for the solution of equations where either reaction (associated to zero‐order derivatives of the unknown) and/or advection (proportional to first‐order derivatives) dominates on diffusion (associated to second‐order derivatives). The addressed issues are turbulence and advective‐reactive features in modelling turbomachinery flows.

Design/methodology/approach

The present work addresses the definition of a new PG stabilization scheme for the reactive flow limit, formulated on a quadratic finite element space of approximation. We advocate the use of a higher order stabilized formulation that guarantees the best compromise between solution stability and accuracy. The formulation is first presented for linear scalar one‐dimensional advective‐diffusive‐reactive problems and then extended to quadrangular Q2 elements.

Findings

The proposed advective‐diffusive‐reactive PG formulation improves the solution accuracy with respect to a standard streamline driven stabilization schemes, e.g. the streamline upwind or Galerkin, in that it properly accounts for the boundary layer region flow phenomena in presence of non‐equilibrium effects.

Research limitations/implications

The numerical method here proposed has been designed for second‐order quadrangular finite‐elements. In particular, the Reynolds‐Averaged Navier‐Stokes equations with a non‐linear turbulence closure have been modelled using the stable mixed element pair Q2‐Q1.

Originality/value

This paper investigated the predicting capabilities of a finite element method stabilized formulation developed for the purpose of solving advection‐reaction‐diffusion problems. The new method, called SPG, demonstrates its suitability in solving the typical equations of turbulence eddy viscosity models.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 23 March 2012

Syed Mohyud‐Din, Ahmet Yıldırım and Yagmur Gulkanat

The aim of this paper is to present the numerical simulation of the population dynamics model with density‐dependent migrations and the Allee effects using the homotopy…

167

Abstract

Purpose

The aim of this paper is to present the numerical simulation of the population dynamics model with density‐dependent migrations and the Allee effects using the homotopy perturbation method (HPM).

Design/methodology/approach

The paper applied HPM and the results obtained by this method are compared to the exact solution. The results show applicability, accuracy and efficiency of HPM in solving the transient non‐linear advection‐diffusion‐reaction equation.

Findings

In this study, HPM is applied to solve the model of population dynamics with density‐ dependent migrations and the Allee effects. Numerical approximations show a high degree of accuracy. The numerical results we obtained justify the advantage of this methodology, even in the few terms approximation is accurate. Errors can be made smaller by taking new terms of the iteration formulas.

Originality/value

It is confirmed that the work has not been published in any other journal.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 22 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 October 2018

Sanjay Komala Sheshachala and Ramon Codina

This paper aims to present a finite element formulation to approximate systems of reaction–diffusion–advection equations, focusing on cases with nonlinear reaction. The…

Abstract

Purpose

This paper aims to present a finite element formulation to approximate systems of reaction–diffusion–advection equations, focusing on cases with nonlinear reaction. The formulation is based on the orthogonal sub-grid scale approach, with some simplifications that allow one to stabilize only the convective term, which is the source of potential instabilities. The space approximation is combined with finite difference time integration and a Newton–Raphson linearization of the reactive term. Some numerical examples show the accuracy of the resulting formulation. Applications using classical nonlinear reaction models in population dynamics are also provided, showing the robustness of the approach proposed.

Design/methodology/approach

A stabilized finite element method for advection–diffusion–reaction equations to the problem on nonlinear reaction is adapted. The formulation designed has been implemented in a computer code. Numerical examples are run to show the accuracy and robustness of the formulation.

Findings

The stabilized finite element method from which the authors depart can be adapted to problems with nonlinear reaction. The resulting method is very robust and accurate. The framework developed is applicable to several problems of interest by themselves, such as the predator–prey model.

Originality/value

A stabilized finite element method to problems with nonlinear reaction has been extended. Original contributions are the design of the stabilization parameters and the linearization of the problem. The application examples, apart from demonstrating the validity of the numerical model, help to get insight in the system of nonlinear equations being solved.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 January 2020

Ramesh Chand Mittal, Sudhir Kumar and Ram Jiwari

The purpose of this study is to extend the cubic B-spline quasi-interpolation (CBSQI) method via Kronecker product for solving 2D unsteady advection-diffusion equation. The CBSQI…

Abstract

Purpose

The purpose of this study is to extend the cubic B-spline quasi-interpolation (CBSQI) method via Kronecker product for solving 2D unsteady advection-diffusion equation. The CBSQI method has been used for solving 1D problems in literature so far. This study seeks to use the idea of a Kronecker product to extend the method for 2D problems.

Design/methodology/approach

In this work, a CBSQI is used to approximate the spatial partial derivatives of the dependent variable. The idea of the Kronecker product is used to extend the method for 2D problems. This produces the system of ordinary differential equations (ODE) with initial conditions. The obtained system of ODE is solved by strong stability preserving the Runge–Kutta method (SSP-RK-43).

Findings

It is found that solutions obtained by the proposed method are in good agreement with the analytical solution. Further, the results are also compared with available numerical results in the literature, and a reasonable degree of compliance is observed.

Originality/value

To the best of the authors’ knowledge, the CBSQI method is used for the first time for solving 2D problems and can be extended for higher-dimensional problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 September 2023

Huseyin Tunc and Murat Sari

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Abstract

Purpose

This study aims to derive a novel spatial numerical method based on multidimensional local Taylor series representations for solving high-order advection-diffusion (AD) equations.

Design/methodology/approach

The parabolic AD equations are reduced to the nonhomogeneous elliptic system of partial differential equations by utilizing the Chebyshev spectral collocation method (ChSCM) in the temporal variable. The implicit-explicit local differential transform method (IELDTM) is constructed over two- and three-dimensional meshes using continuity equations of the neighbor representations with either explicit or implicit forms in related directions. The IELDTM yields an overdetermined or underdetermined system of algebraic equations solved in the least square sense.

Findings

The IELDTM has proven to have excellent convergence properties by experimentally illustrating both h-refinement and p-refinement outcomes. A distinctive feature of the IELDTM over the existing numerical techniques is optimizing the local spatial degrees of freedom. It has been proven that the IELDTM provides more accurate results with far fewer degrees of freedom than the finite difference, finite element and spectral methods.

Originality/value

This study shows the derivation, applicability and performance of the IELDTM for solving 2D and 3D advection-diffusion equations. It has been demonstrated that the IELDTM can be a competitive numerical method for addressing high-space dimensional-parabolic partial differential equations (PDEs) arising in various fields of science and engineering. The novel ChSCM-IELDTM hybridization has been proven to have distinct advantages, such as continuous utilization of time integration and optimized formulation of spatial approximations. Furthermore, the novel ChSCM-IELDTM hybridization can be adapted to address various other types of PDEs by modifying the theoretical derivation accordingly.

Details

Engineering Computations, vol. 40 no. 9/10
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 31