Search results

1 – 10 of 416
Article
Publication date: 3 July 2017

Appanah Rao Appadu

An unconditionally positive definite finite difference scheme termed as UPFD has been derived to approximate a linear advection-diffusion-reaction equation which models…

Abstract

Purpose

An unconditionally positive definite finite difference scheme termed as UPFD has been derived to approximate a linear advection-diffusion-reaction equation which models exponential travelling waves and the coefficients of advection, diffusion and reactive terms have been chosen as one (Chen-Charpentier and Kojouharov, 2013). In this work, the author tests UPFD scheme under some other different regimes of advection, diffusion and reaction. The author considers the case when the coefficient of advection, diffusion and reaction are all equal to one and also cases under which advection or diffusion or reaction is more important. Some errors such as L1 error, dispersion, dissipation errors and relative errors are tabulated. Moreover, the author compares some spectral properties of the method under different regimes. The author obtains the variation of the following quantities with respect to the phase angle: modulus of exact amplification factor, modulus of amplification factor of the scheme and relative phase error.

Design/methodology/approach

Difficulties can arise in stability analysis. It is important to have a full understanding of whether the conditions obtained for stability are sufficient, necessary or necessary and sufficient. The advection-diffusion-reaction is quite similar to the advection-diffusion equation, it has an extra reaction term and therefore obtaining stability of numerical methods discretizing advection-diffusion-reaction equation is not easy as is the case with numerical methods discretizing advection-diffusion equations. To avoid difficulty involved with obtaining region of stability, the author shall consider unconditionally stable finite difference schemes discretizing advection-diffusion-reaction equations.

Findings

The UPFD scheme is unconditionally stable but not unconditionally consistent. The scheme was tested on an advection-diffusion-reaction equation which models exponential travelling waves, and the author computed various errors such as L1 error, dispersion and dissipation errors, relative errors under some different regimes of advection, diffusion and reaction. The scheme works best for very small values of k as k → 0 (for instance, k = 0.00025, 0.0005) and performs satisfactorily at other values of k such as 0.001 for two regimes; a = 1, D = 1, κ = 1 and a = 1, D = 1, κ = 5. When a = 5, D = 1, κ = 1, the scheme performs quite well at k = 0.00025 and satisfactorily at k = 0.0005 but is not efficient at larger values of k. For the diffusive case (a = 1, D = 5, κ = 1), the scheme does not perform well. In general, the author can conclude that the choice of k is very important, as it affects to a great extent the performance of the method.

Originality/value

The UPFD scheme is effective to solve advection-diffusion-reaction problems when advection or reactive regime is dominant and for the case, a = 1, D = 1, κ = 1, especially at low values of k. Moreover, the magnitude of the dispersion and dissipation errors using UPFD are of the same order for all the four regimes considered as seen from Tables 1 to 4. This indicates that if the author is to optimize the temporal step size at a given value of the spatial step size, the optimization function must consist of both the AFM and RPE. Some related work on optimization can be seen in Appadu (2013). Higher-order unconditionally stable schemes can be constructed for the regimes for which UPFD is not efficient enough for instance when advection and diffusion are dominant.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 February 2020

J.I. Ramos

The purpose of this study is to develop a new method of lines for one-dimensional (1D) advection-reaction-diffusion (ADR) equations that is conservative and provides piecewise…

Abstract

Purpose

The purpose of this study is to develop a new method of lines for one-dimensional (1D) advection-reaction-diffusion (ADR) equations that is conservative and provides piecewise analytical solutions in space, compare it with other finite-difference discretizations and assess the effects of advection and reaction on both 1D and two-dimensional (2D) problems.

Design/methodology/approach

A conservative method of lines based on the piecewise analytical integration of the two-point boundary value problems that result from the local solution of the advection-diffusion operator subject to the continuity of the dependent variables and their fluxes at the control volume boundaries is presented. The method results in nonlinear first-order, ordinary differential equations in time for the nodal values of the dependent variables at three adjacent grid points and triangular mass and source matrices, reduces to the well-known exponentially fitted techniques for constant coefficients and equally spaced grids and provides continuous solutions in space.

Findings

The conservative method of lines presented here results in three-point finite difference equations for the nodal values, implicitly treats the advection and diffusion terms and is unconditionally stable if the reaction terms are implicitly treated. The method is shown to be more accurate than other three-point, exponentially fitted methods for nonlinear problems with interior and/or boundary layers and/or source/reaction terms. The effects of linear advection in 1D reacting flow problems indicates that the wave front steepens as it approaches the downstream boundary, whereas its back corresponds to a translation of the initial conditions; for nonlinear advection, the wave front exhibits steepening but the wave back shows a linear dependence on space. For a system of two nonlinearly coupled, 2D ADR equations, it is shown that a counter-clockwise rotating vortical field stretches the spiral whose tip drifts about the center of the domain, whereas a clock-wise rotating one compresses the wave and thickens its arms.

Originality/value

A new, conservative method of lines that implicitly treats the advection and diffusion terms and provides piecewise-exponential solutions in space is presented and applied to some 1D and 2D advection reactions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 August 2003

Krishna M. Singh and Masataka Tanaka

This paper presents an application of the dual reciprocity boundary element method (DRBEM) to transient advectiondiffusion problems. Radial basis functions and augmented thin…

Abstract

This paper presents an application of the dual reciprocity boundary element method (DRBEM) to transient advectiondiffusion problems. Radial basis functions and augmented thin plate splines (TPS) have been used as coordinate functions in DRBEM approximation in addition to the ones previously used in the literature. Linear multistep methods have been used for time integration of differential algebraic boundary element system. Numerical results are presented for the standard test problem of advectiondiffusion of a sharp front. Use of TPS yields the most accurate results. Further, considerable damping is seen in the results with one step backward difference method, whereas higher order methods produce perceptible numerical dispersion for advection‐dominated problems.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 13 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 16 October 2018

Rajni Rohila and R.C. Mittal

This paper aims to develop a novel numerical method based on bi-cubic B-spline functions and alternating direction (ADI) scheme to study numerical solutions of advection diffusion

Abstract

Purpose

This paper aims to develop a novel numerical method based on bi-cubic B-spline functions and alternating direction (ADI) scheme to study numerical solutions of advection diffusion equation. The method captures important properties in the advection of fluids very efficiently. C.P.U. time has been shown to be very less as compared with other numerical schemes. Problems of great practical importance have been simulated through the proposed numerical scheme to test the efficiency and applicability of method.

Design/methodology/approach

A bi-cubic B-spline ADI method has been proposed to capture many complex properties in the advection of fluids.

Findings

Bi-cubic B-spline ADI technique to investigate numerical solutions of partial differential equations has been studied. Presented numerical procedure has been applied to important two-dimensional advection diffusion equations. Computed results are efficient and reliable, have been depicted by graphs and several contour forms and confirm the accuracy of the applied technique. Stability analysis has been performed by von Neumann method and the proposed method is shown to satisfy stability criteria unconditionally. In future, the authors aim to extend this study by applying more complex partial differential equations. Though the structure of the method seems to be little complex, the method has the advantage of using small processing time. Consequently, the method may be used to find solutions at higher time levels also.

Originality/value

ADI technique has never been applied with bi-cubic B-spline functions for numerical solutions of partial differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 19 June 2007

Mehdi Dehghan

The diffusionadvection phenomena occur in many physical situations such as, the transport of heat in fluids, flow through porous media, the spread of contaminants in fluids and…

Abstract

Purpose

The diffusionadvection phenomena occur in many physical situations such as, the transport of heat in fluids, flow through porous media, the spread of contaminants in fluids and as well as in many other branches of science and engineering. So it is essential to approximate the solution of these kinds of partial differential equations numerically in order to investigate the prediction of the mathematical models, as the exact solutions are usually unavailable.

Design/methodology/approach

The difficulties arising in numerical solutions of the transport equation are well known. Hence, the study of transport equation continues to be an active field of research. A number of mathematicians have developed the method of time‐splitting to divide complicated time‐dependent partial differential equations into sets of simpler equations which could then be solved separately by numerical means over fractions of a time‐step. For example, they split large multi‐dimensional equations into a number of simpler one‐dimensional equations each solved separately over a fraction of the time‐step in the so‐called locally one‐dimensional (LOD) method. In the same way, the time‐splitting process can be used to subdivide an equation incorporating several physical processes into a number of simpler equations involving individual physical processes. Thus, instead of applying the one‐dimensional advectiondiffusion equation over one time‐step, it may be split into the pure advection equation and the pure diffusion equation each to be applied over half a time‐step. Known accurate computational procedures of solving the simpler diffusion and advection equations may then be used to solve the advectiondiffusion problem.

Findings

In this paper, several different computational LOD procedures were developed and discussed for solving the two‐dimensional transport equation. These schemes are based on the time‐splitting finite difference approximations.

Practical implications

The new approach is simple and effective. The results of a numerical experiment are given, and the accuracy are discussed and compared.

Originality/value

A comparison of calculations with the results of the conventional finite difference techniques demonstrates the good accuracy of the proposed approach.

Details

Kybernetes, vol. 36 no. 5/6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 14 June 2011

İdris Dağ, Aynur Canivar and Ali Şahin

The purpose of this paper is to provide numerical solutions of the time‐dependent advectiondiffusion problem by using B‐spline finite element methods in which Taylor series…

Abstract

Purpose

The purpose of this paper is to provide numerical solutions of the time‐dependent advectiondiffusion problem by using B‐spline finite element methods in which Taylor series expansion is used for the related time discretization.

Design/methodology/approach

The solution domain is partitioned into uniform mesh. The collocation and the Galerkin methods where B‐spline functions are used as base functions are applied to advectiondiffusion equation.

Findings

Given methods are unconditionally stable and the obtained results are comparable with some earlier studies in terms of accuracy.

Originality/value

Quadratic and cubic B‐spline base functions are used with Taylor series expansion for the discretization of the equation.

Details

Kybernetes, vol. 40 no. 5/6
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 17 October 2018

Sanjay Komala Sheshachala and Ramon Codina

This paper aims to present a finite element formulation to approximate systems of reaction–diffusionadvection equations, focusing on cases with nonlinear reaction. The…

Abstract

Purpose

This paper aims to present a finite element formulation to approximate systems of reaction–diffusionadvection equations, focusing on cases with nonlinear reaction. The formulation is based on the orthogonal sub-grid scale approach, with some simplifications that allow one to stabilize only the convective term, which is the source of potential instabilities. The space approximation is combined with finite difference time integration and a Newton–Raphson linearization of the reactive term. Some numerical examples show the accuracy of the resulting formulation. Applications using classical nonlinear reaction models in population dynamics are also provided, showing the robustness of the approach proposed.

Design/methodology/approach

A stabilized finite element method for advectiondiffusion–reaction equations to the problem on nonlinear reaction is adapted. The formulation designed has been implemented in a computer code. Numerical examples are run to show the accuracy and robustness of the formulation.

Findings

The stabilized finite element method from which the authors depart can be adapted to problems with nonlinear reaction. The resulting method is very robust and accurate. The framework developed is applicable to several problems of interest by themselves, such as the predator–prey model.

Originality/value

A stabilized finite element method to problems with nonlinear reaction has been extended. Original contributions are the design of the stabilization parameters and the linearization of the problem. The application examples, apart from demonstrating the validity of the numerical model, help to get insight in the system of nonlinear equations being solved.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 11
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 21 June 2019

Mohsen Hadadian Nejad Yousefi, Seyed Hossein Ghoreishi Najafabadi and Emran Tohidi

The purpose of this paper is to develop an efficient and reliable spectral integral equation method for solving two-dimensional unsteady advection-diffusion equations.

Abstract

Purpose

The purpose of this paper is to develop an efficient and reliable spectral integral equation method for solving two-dimensional unsteady advection-diffusion equations.

Design/methodology/approach

In this study, the considered two-dimensional unsteady advection-diffusion equations are transformed into the equivalent partial integro-differential equations via integrating from the considered unsteady advection-diffusion equation. After this stage, by using Chebyshev polynomials of the first kind and the operational matrix of integration, the integral equation would be transformed into the system of linear algebraic equations. Robustness and efficiency of the proposed method were illustrated by six numerical simulations experimentally. The numerical results confirm that the method is efficient, highly accurate, fast and stable for solving two-dimensional unsteady advection-diffusion equations.

Findings

The proposed method can solve the equations with discontinuity near the boundaries, the advection-dominated equations and the equations in irregular domains. One of the numerical test problems designed specially to evaluate the performance of the proposed method for discontinuity near boundaries.

Originality/value

This study extends the intention of one dimensional Chebyshev approximate approaches (Yuksel and Sezer, 2013; Yuksel et al., 2015) for two-dimensional unsteady advection-diffusion problems and the basic intention of our suggested method is quite different from the approaches for hyperbolic problems (Bulbul and Sezer, 2011).

Article
Publication date: 13 May 2020

Mehdi Dehghan and Vahid Mohammadi

This study aims to apply a numerical meshless method, namely, the boundary knot method (BKM) combined with the meshless analog equation method (MAEM) in space and use a…

Abstract

Purpose

This study aims to apply a numerical meshless method, namely, the boundary knot method (BKM) combined with the meshless analog equation method (MAEM) in space and use a semi-implicit scheme in time for finding a new numerical solution of the advection–reaction–diffusion and reaction–diffusion systems in two-dimensional spaces, which arise in biology.

Design/methodology/approach

First, the BKM is applied to approximate the spatial variables of the studied mathematical models. Then, this study derives fully discrete scheme of the studied models using a semi-implicit scheme based on Crank–Nicolson idea, which gives a linear system of algebraic equations with a non-square matrix per time step that is solved by the singular value decomposition. The proposed approach approximates the solution of a given partial differential equation using particular and homogeneous solutions and without considering the fundamental solutions of the proposed equations.

Findings

This study reports some numerical simulations for showing the ability of the presented technique in solving the studied mathematical models arising in biology. The obtained results by the developed numerical scheme are in good agreement with the results reported in the literature. Besides, a simulation of the proposed model is done on buttery shape domain in two-dimensional space.

Originality/value

This study develops the BKM combined with MAEM for solving the coupled systems of (advection) reaction–diffusion equations in two-dimensional spaces. Besides, it does not need the fundamental solution of the mathematical models studied here, which omits any difficulties.

Article
Publication date: 1 July 1996

J. SHI and E.F. TORO

A new approach for solving steady incompressible Navier‐Stokes equations is presented in this paper. This method extends the upwind Riemann‐problem‐based techniques to viscous…

Abstract

A new approach for solving steady incompressible Navier‐Stokes equations is presented in this paper. This method extends the upwind Riemann‐problem‐based techniques to viscous flows, which is obtained by applying modified artificial compressibility Navier‐Stokes equations and fully discrete high‐order numerical schemes for systems of advectiondiffusion equations. In this approach, utilizing the local Riemann solutions the steady incompressible viscous flows can be solved in a similar way to that of inviscid hyperbolic conservation laws. Numerical experiments on the driven cavity problem indicate that this approach can give satisfactory solutions.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 416