Search results

1 – 10 of 458
Article
Publication date: 18 January 2011

Ryszard Uklejewski, Mariusz Winiecki, Piotr Rogala and Janusz Mielniczuk

The aim of this paper is to present the main results of a research project finished in 2008 which concerned the selective laser melted (SLM) prototype of a new kind of minimally…

1351

Abstract

Purpose

The aim of this paper is to present the main results of a research project finished in 2008 which concerned the selective laser melted (SLM) prototype of a new kind of minimally invasive resurfacing hip arthroplasty (RHA) endoprosthesis with the original multi‐spiked connecting scaffold (MSC‐Scaffold). Previous attempts performed in pre‐Direct Metal Manufacturing (DMM) era demonstrated that it was impossible to manufacture suitable prototypes of this RHA endoprosthesis (especially of the MSC‐Scaffold) using traditional machining technologies. Owing to an extensive development of DMM technologies observed in recent years the manufacturing of such prototypes has become possible.

Design/methodology/approach

Computer aided design models of pre‐prototypes and the prototype of the RHA endoprosthesis with MSC‐Scaffold were designed and initially optimized within the claims and the general assumptions of international patents by Rogala. Prototyping in SLM technology was subcontracted to SLM Tech Center (Paderborn, Germany). Macroscopic and SEM microscopic evaluation of the MSC‐Scaffold was performed using SLM manufactured prototypes and paying special attention to the quality and precision of manufacturing.

Findings

It was found that SLM can be successfully applied to manufacturing of prototypes of the original minimally invasive RHA endoprosthesis. The manufacturing quality of the 3D spikes system of the MSC‐Scaffold, which mimics the interdigitations of articular subchondral bone, has been proved to be geometrically corresponding to the biological original. Nevertheless, some pores and non‐melted zones were found in SLM prototyped RHA endoprosthesis cross‐sections which need to be eliminated to minimize the potential risk of clinical failure.

Research limitations/implications

The presented case study was performed with a limited number of samples. More research needs to be performed on the rapid prototyped samples including microstructural and mechanical tests. The results may enable the optimization of the SLM manufacturing process of the prototypes of the minimally invasive RHA endoprosthesis with MSC‐Scaffold.

Practical implications

The SLM can be considered as potentially suitable for the fabrication of patient‐fitted minimally invasive RHA endoprostheses with MSC‐Scaffold.

Originality/value

For the first time, largely owing to SLM technology, it was possible to manufacture the prototype of the original minimally invasive RHA endoprosthesis with MSC‐Scaffold suitable for further research.

Details

Rapid Prototyping Journal, vol. 17 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 March 2024

Diana Irinel Baila, Filippo Sanfilippo, Tom Savu, Filip Górski, Ionut Cristian Radu, Catalin Zaharia, Constantina Anca Parau, Martin Zelenay and Pacurar Razvan

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM

Abstract

Purpose

The development of new advanced materials, such as photopolymerizable resins for use in stereolithography (SLA) and Ti6Al4V manufacture via selective laser melting (SLM) processes, have gained significant attention in recent years. Their accuracy, multi-material capability and application in novel fields, such as implantology, biomedical, aviation and energy industries, underscore the growing importance of these materials. The purpose of this study is oriented toward the application of new advanced materials in stent manufacturing realized by 3D printing technologies.

Design/methodology/approach

The methodology for designing personalized medical devices, implies computed tomography (CT) or magnetic resonance (MR) techniques. By realizing segmentation, reverse engineering and deriving a 3D model of a blood vessel, a subsequent stent design is achieved. The tessellation process and 3D printing methods can then be used to produce these parts. In this context, the SLA technology, in close correlation with the new types of developed resins, has brought significant evolution, as demonstrated through the analyses that are realized in the research presented in this study. This study undertakes a comprehensive approach, establishing experimentally the characteristics of two new types of photopolymerizable resins (both undoped and doped with micro-ceramic powders), remarking their great accuracy for 3D modeling in die-casting techniques, especially in the production process of customized stents.

Findings

A series of analyses were conducted, including scanning electron microscopy, energy-dispersive X-ray spectroscopy, mapping and roughness tests. Additionally, the structural integrity and molecular bonding of these resins were assessed by Fourier-transform infrared spectroscopy–attenuated total reflectance analysis. The research also explored the possibilities of using metallic alloys for producing the stents, comparing the direct manufacturing methods of stents’ struts by SLM technology using Ti6Al4V with stent models made from photopolymerizable resins using SLA. Furthermore, computer-aided engineering (CAE) simulations for two different stent struts were carried out, providing insights into the potential of using these materials and methods for realizing the production of stents.

Originality/value

This study covers advancements in materials and additive manufacturing methods but also approaches the use of CAE analysis, introducing in this way novel elements to the domain of customized stent manufacturing. The emerging applications of these resins, along with metallic alloys and 3D printing technologies, have brought significant contributions to the biomedical domain, as emphasized in this study. This study concludes by highlighting the current challenges and future research directions in the use of photopolymerizable resins and biocompatible metallic alloys, while also emphasizing the integration of artificial intelligence in the design process of customized stents by taking into consideration the 3D printing technologies that are used for producing these stents.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 June 2015

Andrzej Pawlak, Patrycja Szymczyk, Grzegorz Ziolkowski, Edward Chlebus and Bogdan Dybala

The purpose of this paper is to present the results of theoretical considerations and experimental tests concerning microscaffold fabrication by selective laser melting (SLM)…

Abstract

Purpose

The purpose of this paper is to present the results of theoretical considerations and experimental tests concerning microscaffold fabrication by selective laser melting (SLM). Also described are manufacturing technologies for regular lattice microstructure with the smallest possible pore sizes and fullest possible order of geometric accuracy retained. Process parameters of SLM greatly affect the properties of the fabricated structures not only in regards to their material characteristics but also in their geometric representation accuracy.

Design/methodology/approach

The paper discusses technological relationships between different laser micrometallurgy strategies and the accuracy of the manufactured microstructures.

Findings

With technological possibilities evaluated, regular porous structure was created composed of cubic pores with cylindrical struts as their boundaries. Strut diameters are up to 180 μm, and the distance between neighboring strut axes was reduced to 600 μm, which gives a hollow channels clearance of approximately 420 μm.

Originality/value

Presented results show possibilities of manufacturing small high-strength lattice microstructures by SLM using Ti-6Al-7Nb titanium alloy powders for tissue engineering.

Details

Rapid Prototyping Journal, vol. 21 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 23 August 2021

Iván La Fé-Perdomo, Jorge Andres Ramos-Grez, Gerardo Beruvides and Rafael Alberto Mujica

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the…

Abstract

Purpose

The purpose of this paper is to outline some key aspects such as material systems used, phenomenological and statistical process modeling, techniques applied to monitor the process and optimization approaches reported. All these need to be taken into account for the ongoing development of the SLM technique, particularly in health care applications. The outcomes from this review allow not only to summarize the main features of the process but also to collect a considerable amount of investigation effort so far achieved by the researcher community.

Design/methodology/approach

This paper reviews four significant areas of the selective laser melting (SLM) process of metallic systems within the scope of medical devices as follows: established and novel materials used, process modeling, process tracking and quality evaluation, and finally, the attempts for optimizing some process features such as surface roughness, porosity and mechanical properties. All the consulted literature has been highly detailed and discussed to understand the current and existing research gaps.

Findings

With this review, there is a prevailing need for further investigation on copper alloys, particularly when conformal cooling, antibacterial and antiviral properties are sought after. Moreover, artificial intelligence techniques for modeling and optimizing the SLM process parameters are still at a poor application level in this field. Furthermore, plenty of research work needs to be done to improve the existent online monitoring techniques.

Research limitations/implications

This review is limited only to the materials, models, monitoring methods, and optimization approaches reported on the SLM process for metallic systems, particularly those found in the health care arena.

Practical implications

SLM is a widely used metal additive manufacturing process due to the possibility of elaborating complex and customized tridimensional parts or components. It is corroborated that SLM produces minimal amounts of waste and enables optimal designs that allow considerable environmental advantages and promotes sustainability.

Social implications

The key perspectives about the applications of novel materials in the field of medicine are proposed.

Originality/value

The investigations about SLM contain an increasing amount of knowledge, motivated by the growing interest of the scientific community in this relatively young manufacturing process. This study can be seen as a compilation of relevant researches and findings in the field of the metal printing process.

Details

Rapid Prototyping Journal, vol. 27 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 31 January 2022

Sara Giganto, Susana Martínez-Pellitero, Eduardo Cuesta, Pablo Zapico and Joaquín Barreiro

Among the different methodologies used for performance control in precision manufacturing, the measurement of metrological test artefacts becomes very important for the…

Abstract

Purpose

Among the different methodologies used for performance control in precision manufacturing, the measurement of metrological test artefacts becomes very important for the characterization, optimization and performance evaluation of additive manufacturing (AM) systems. The purpose of this study is to design and manufacture several benchmark artefacts to evaluate the accuracy of the selective laser melting (SLM) manufacturing process.

Design/methodology/approach

Artefacts consist of different primitive features (planes, cylinders and hemispheres) on sloped planes (0°, 15°, 30°, 45°) and stair-shaped and sloped planes (from 0° to 90°, at 5° intervals), manufactured in 17-4PH stainless steel. The artefacts were measured optically by a structured light scanner to verify the geometric dimensioning and tolerancing of SLM manufacturing.

Findings

The results provide design recommendations for precision SLM manufacturing of 17-4PH parts. Regarding geometrical accuracy, it is recommended to avoid surfaces with 45° negative slopes or higher. On the other hand, the material shrinkage effect can be compensated by resizing features according to X and Y direction.

Originality/value

No previous work has been found that evaluates accuracy when printing inwards (pockets) and outwards (pads) geometries at different manufacturing angles using SLM. The proposed artefacts can be used to determine the manufacturing accuracy of different AM systems by resizing to fit the build envelope of the system to evaluate. Analysis of manufactured benchmark artefacts allows to determine rules for the most suitable design of the desired parts.

Article
Publication date: 18 April 2017

Pieter Johannes Theron Conradie, Dimitri Dimitrov, Gert Adriaan Oosthuizen, Philip Hugo and Mike Saxer

The purpose of this paper is to investigate the combination of selective laser melting (SLM) and 5-axis CNC milling to produce parts from titanium powder. The aim is to achieve a…

Abstract

Purpose

The purpose of this paper is to investigate the combination of selective laser melting (SLM) and 5-axis CNC milling to produce parts from titanium powder. The aim is to achieve a more resource-efficient manufacturing process by reducing material wastage and machining time, while adhering to quality requirements.

Design/methodology/approach

A benchmark titanium aerospace component is manufactured with two different approaches using subtractive and additive manufacturing technologies. The first component is produced from a solid billet using only 5-axis CNC milling. The second component is grown from powder using SLM to produce a net-shaped part of which the final shape and part accuracy are achieved through 5-axis CNC milling. The potential saving of material and machining time of the process combination is evaluated by comparing it to the conventional purely CNC approach. The form accuracy, surface finish, mechanical properties and tool wear for the two processes are also compared.

Findings

The results show that the process combination can be used to produce Ti components that adhere to aerospace standards. With the process combination, a material saving of 87 per cent was achieved along with a reduction of 21 per cent in machining time. Further improvements are possible using optimized SLM build and machining strategies.

Originality/value

This paper presents the results of a resource efficiency assessment on the combination of SLM and 5-axis CNC milling for the titanium alloy, Ti6Al4V. It is expected that this process combination can make a significant contribution towards reducing material wastage and machining time for aerospace applications.

Details

Rapid Prototyping Journal, vol. 23 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 May 2022

Abid Ullah, Asif Ur Rehman, Metin Uymaz Salamci, Fatih Pıtır and Tingting Liu

This paper aims to reduce part defects and improve ceramic additive manufacturing (AM). Selective laser melting (SLM) experiments were carried out to explore the effect of laser…

Abstract

Purpose

This paper aims to reduce part defects and improve ceramic additive manufacturing (AM). Selective laser melting (SLM) experiments were carried out to explore the effect of laser power and scanning speed on the microstructure, melting behaviour and surface roughness of cuprous oxide (Cu2O) ceramic.

Design/methodology/approach

The experiments were designed based on varying laser power and scanning speed. The laser power was changed between 50 W and 140 W, and the scanning speed was changed between 170 mm/s and 210 mm/s. Other parameters, such as scanning strategy, layer thickness and hatch spacing, remain constant.

Findings

Laser power and scan speed are the two important laser parameters of great significance in the SLM technique that directly affect the molten state of ceramic powders. The findings reveal that Cu2O part defects are widely controlled by gradually increasing the laser power to 110 W and reducing the scanning speed to 170 mm/s. Furthermore, excessive laser power (>120 W) caused surface roughness, cavities and porous microstructure due to the extremely high energy input of the laser beam.

Originality/value

The SLM technique was used to produce Cu2O ceramic specimens. SLM of oxide ceramic became feasible using a slurry-based approach. The causes of several part defects such as spattering effect, crack initiation and propagation, the formation of porous microstructure, surface roughness and asymmetrical grain growth during the SLM of cuprous oxide (Cu2O) are thoroughly investigated.

Details

Rapid Prototyping Journal, vol. 28 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 October 2017

Adrian Bartlomiej Mróz, Lukasz Lapaj, Tomasz Wisniewski, Konstanty Skalski and Volf Leshchynsky

Orthopaedic implants, such as intervertebral disc endoprostheses (IDEs) are difficult to manufacture by means of conventional methods because of their complex shape. However…

Abstract

Purpose

Orthopaedic implants, such as intervertebral disc endoprostheses (IDEs) are difficult to manufacture by means of conventional methods because of their complex shape. However, technologies developed in recent years, such as selective laser melting, could simplify this process. Although this method is attractive in both manufacturing and rapid prototyping of IDEs, little is known about their tribological performance. The functional aim of the work is to conduct a tribological evaluation of the ASTM F75 alloy after selective laser melting process and to investigate the viability of the technology in IDE design. The research aim was an explanation of the wear mechanism of bearing surfaces with respect to the reference material.

Design/methodology/approach

In this paper, the tribological test results of a lumbar IDE prototype fabricated by selective laser melting and forging is presented and compared. The endoprostheses were fabricated from commercially available ASTM F75 powder using a selective laser melting device. As a reference material, a forged ASTM F1537 LC alloy was used. Comparative wear and friction tests were carried out with the use of a unique spine simulator.

Findings

The obtained results confirm the viability of the selective laser technology in endoprosthesis design. Unfortunately, poorer tribological wear resistance of endoprostheses produced by means of selective laser melting (SLM) technology compared with that of the reference material calls into question the possibility of using these technologies in the manufacturing process of endoprosthesis' components exposed to tribological wear.

Originality/value

This paper presents the friction and wear behaviour of the lumbar IDE prototype. The tests were carried out in motion and loading conditions close to those we observe in the lumbar spine.

Details

Rapid Prototyping Journal, vol. 23 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 26 July 2021

Rajae Jemghili, Abdelmajid Ait Taleb and Mansouri Khalifa

Although many researchers have widely studied additive manufacturing (AM) as one of the most important industrial revolutions, few have presented a bibliometric analysis of the…

Abstract

Purpose

Although many researchers have widely studied additive manufacturing (AM) as one of the most important industrial revolutions, few have presented a bibliometric analysis of the published studies in this area. This paper aims to evaluate AM research trends based on 4607 publications most cited from year 2010 to 2020.

Design/methodology/approach

The research methodology is bibliometric indicators and network analysis, including analysis based on keywords, citation analysis, productive journal, related published papers and authors indicators. Two free available software were employed VOSviewer and Bibexcel.

Findings

Keywords analysis results indicate that among the AM processes, Selective Laser Melting and Fused Deposition Modeling techniques, are the two processes ranked on top of the techniques employed and studied with 35.76% and 20.09% respectively. The citation analysis by VOSviewer software, reveals that the medical applications field and the fabrication of metal parts are the areas that interest researchers greatly. Different new research niches, as pharmaceutical industry, digital construction and food fabrication are growing topics in AM scientific works. This study reveals that journals “Materials & design”, “Advanced materials”, “Acs applied materials & interfaces”, “Additive manufacturing”, “Advanced functional materials” and “Biofabrication” are the most productive and influential in AM scientific research.

Originality/value

The results and conclusions of this work can be used as indicators of trends in AM research and/or as prospects for future studies in this area.

Details

Rapid Prototyping Journal, vol. 27 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 458