Search results

1 – 6 of 6
Article
Publication date: 22 March 2024

João Eduardo Sampaio Brasil, Fabio Antonio Sartori Piran, Daniel Pacheco Lacerda, Maria Isabel Wolf Morandi, Debora Oliveira da Silva and Miguel Afonso Sellitto

The purpose of this study is to evaluate the efficiency of a Brazilian steelmaking company’s reheating process of the hot rolling mill.

Abstract

Purpose

The purpose of this study is to evaluate the efficiency of a Brazilian steelmaking company’s reheating process of the hot rolling mill.

Design/methodology/approach

The research method is a quantitative modeling. The main research techniques are data envelopment analysis, TOBIT regression and simulation supported by artificial neural networks. The model’s input and output variables consist of the average billet weight, number of billets processed in a batch, gas consumption, thermal efficiency, backlog and production yield within a specific period. The analysis spans 20 months.

Findings

The key findings include an average current efficiency of 81%, identification of influential variables (average billet weight, billet count and gas consumption) and simulated analysis. Among the simulated scenarios, the most promising achieved an average efficiency of 95% through increased equipment availability and billet size.

Practical implications

Additional favorable simulated scenarios entail the utilization of higher pre-reheating temperatures for cold billets, representing a large amount of savings in gas consumption and a reduction in CO2 emissions.

Originality/value

This study’s primary innovation lies in providing steelmaking practitioners with a systematic approach to evaluating and enhancing the efficiency of reheating processes.

Details

Management of Environmental Quality: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1477-7835

Keywords

Article
Publication date: 16 September 2022

Daniel Bernardo Ribeiro, Aparecido dos Reis Coutinho, Walter Cardoso Satyro, Fernando Celso de Campos, Carlos Roberto Camello Lima, José Celso Contador and Rodrigo Franco Gonçalves

Construction industry (CI) has great prominence for the world economy, and it is expected that, with the use of the innovative technologies and approaches of Industry 4.0 (I4.0)…

Abstract

Purpose

Construction industry (CI) has great prominence for the world economy, and it is expected that, with the use of the innovative technologies and approaches of Industry 4.0 (I4.0), the new industrial paradigm, construction can reach higher levels of productivity. This study aims to develop a model (readiness model) to assess the level of use of I4.0 technologies by the construction sector in Brazil and its most relevant applications.

Design/methodology/approach

The methodology used was bibliographic research, design-science research and a survey to validate the model, carried out with 162 companies, considered among the main ones in the sector in Brazil. The literature review revealed 13 technologies of I4.0 applied to construction; hence, the views of industry experts were based on these technologies.

Findings

The Digital Advancement Within CoNstruction (DAWN) readiness model was proposed, showing that among the 13 evaluated technologies of I4.0 and their applications, the Brazilian construction companies had a low level of utilization; both high and middle-income companies presented this low level of use; some technologies with a greater number of scientific publications were less used in practice in the Brazilian construction.

Originality/value

The originality and theoretical contribution are to present a readiness model to assess the level of use of I4.0 technologies and their most relevant applications in the CI in countries with an economy similar to Brazil’s, making it possible to measure the level of adoption of these technologies.

Details

Construction Innovation , vol. 24 no. 2
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 29 February 2024

Heng Liu, Yonghua Lu, Haibo Yang, Lihua Zhou and Qiang Feng

In the context of fixed-wing aircraft wing assembly, there is a need for a rapid and precise measurement technique to determine the center distance between two double-hole…

Abstract

Purpose

In the context of fixed-wing aircraft wing assembly, there is a need for a rapid and precise measurement technique to determine the center distance between two double-hole components. This paper aims to propose an optical-based spatial point distance measurement technique using the spatial triangulation method. The purpose of this paper is to design a specialized measurement system, specifically a spherically mounted retroreflector nest (SMR nest), equipped with two laser displacement sensors and a rotary encoder as the core to achieve accurate distance measurements between the double holes.

Design/methodology/approach

To develop an efficient and accurate measurement system, the paper uses a combination of laser displacement sensors and a rotary encoder within the SMR nest. The system is designed, implemented and tested to meet the requirements of precise distance measurement. Software and hardware components have been developed and integrated for validation.

Findings

The optical-based distance measurement system achieves high precision at 0.04 mm and repeatability at 0.02 mm within a range of 412.084 mm to 1,590.591 mm. These results validate its suitability for efficient assembly processes, eliminating repetitive errors in aircraft wing assembly.

Originality/value

This paper proposes an optical-based spatial point distance measurement technique, as well as a unique design of a SMR nest and the introduction of two novel calibration techniques, all of which are validated by the developed software and hardware platform.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 4 March 2024

Hemanth Kumar N. and S.P. Sreenivas Padala

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based…

Abstract

Purpose

The construction industry is tasked with creating sustainable, efficient and cost-effective buildings. This study aims to develop a building information modeling (BIM)-based multiobjective optimization (MOO) model integrating the nondominated sorting genetic algorithm III (NSGA-III) to enhance sustainability. The goal is to reduce embodied energy and cost in the design process.

Design/methodology/approach

Through a case study research method, this study uses BIM, NSGA-III and real-world data in five phases: literature review, identification of factors, BIM model development, MOO model creation and validation in the architecture, engineering and construction sectors.

Findings

The innovative BIM-based MOO model optimizes embodied energy and cost to achieve sustainable construction. A commercial building case study validation showed a reduction of 30% in embodied energy and 21% in cost. This study validates the model’s effectiveness in integrating sustainability goals, enhancing decision-making, collaboration, efficiency and providing superior assessment.

Practical implications

This model delivers a unified approach to sustainable design, cutting carbon footprint and strengthening the industry’s ability to attain sustainable solutions. It holds potential for broader application and future integration of social and economic factors.

Originality/value

The research presents a novel BIM-based MOO model, uniquely focusing on sustainable construction with embodied energy and cost considerations. This holistic and innovative framework extends existing methodologies applicable to various buildings and paves the way for additional research in this area.

Article
Publication date: 4 April 2024

Satyaveer Singh, N. Yuvaraj and Reeta Wattal

The criteria importance through intercriteria correlation (CRITIC) and range of value (ROV) combined methods were used to determine a single index for all multiple responses.

Abstract

Purpose

The criteria importance through intercriteria correlation (CRITIC) and range of value (ROV) combined methods were used to determine a single index for all multiple responses.

Design/methodology/approach

This paper used cold metal transfer (CMT) and pulse metal-inert gas (MIG) welding processes to study the weld-on-bead geometry of AA2099-T86 alloy. This study used Taguchi's approach to find the optimal setting of the input welding parameters. The welding current, welding speed and contact-tip-to workpiece distance were the input welding parameters for finding the output responses, i.e. weld penetration, dilution and heat input. The L9 orthogonal array of Taguchi's approach was used to find out the optimal setting of the input parameters.

Findings

The optimal input welding parameters were determined with combined output responses. The predicted optimum welding input parameters were validated through confirmation tests. Analysis of variance showed that welding speed is the most influential factor in determining the weld bead geometry of the CMT and pulse MIG welding techniques.

Originality/value

The heat input and weld bead geometry are compared in both welding processes. The CMT welding samples show superior defect-free weld beads than pulse MIG welding due to lesser heat input and lesser dilution.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 27 February 2024

Vartenie Aramali, George Edward Gibson, Hala Sanboskani and Mounir El Asmar

Earned value management systems (EVMS), also called integrated project and program management systems, have been greatly examined in the literature, which has typically focused on…

Abstract

Purpose

Earned value management systems (EVMS), also called integrated project and program management systems, have been greatly examined in the literature, which has typically focused on their technical aspects rather than social. This study aims to hypothesize that improving both the technical maturity of EVMS and the social environment elements of EVMS applications together will significantly impact project performance outcomes. For the first time, empirical evidence supports a strong relationship between EVMS maturity and environment.

Design/methodology/approach

Data was collected from 35 projects through four workshops, attended by 31 industry practitioners with an average of 19 years of EVMS experience. These experts, representing 23 organizations, provided over 2,800 data points on sociotechnical integration and performance outcomes, covering projects totaling $21.8 billion. Statistical analyses were performed to derive findings on the impact of technical maturity and social environment on project success.

Findings

The results show statistically significant differences in cost growth, compliance, meeting project objectives and business drivers and customer satisfaction, between projects with high EVMS maturity and environment and projects with poor EVMS maturity and environment. Moreover, the technical and social dimensions were found to be significantly correlated.

Originality/value

Key contributions include a novel and tested performance-driven framework to support integrated project management using EVMS. The adoption of this detailed assessment framework by government and industry is driving a paradigm shift in project management of some of the largest and most complex projects in the U.S.; specifically transitioning from a project assessment based upon a binary approach for EVMS technical maturity (i.e. compliant/noncompliant to standards) to a wide-ranging scale (i.e. 0–1,000) across two dimensions.

Details

International Journal of Managing Projects in Business, vol. 17 no. 8
Type: Research Article
ISSN: 1753-8378

Keywords

1 – 6 of 6