Search results

1 – 10 of over 11000
Article
Publication date: 3 October 2016

Sergio Chiesa, Marco Fioriti and Roberta Fusaro

The purpose of this paper is to present a definition of modern configuration for a medium-altitude long-endurance unmanned aerial vehicle (MALE UAV) and its on-board systems to…

Abstract

Purpose

The purpose of this paper is to present a definition of modern configuration for a medium-altitude long-endurance unmanned aerial vehicle (MALE UAV) and its on-board systems to obtain a suitable basis for future definitions such as a possible logistic support configuration first hypothesis.

Design/methodology/approach

Starting from high-level requirements, both the UAV conceptual design and on-board systems preliminary design have been carried out through proprietary tools. Then, some peculiarities from previous studies, such as systems advanced UAV alternative energy, have been maintained and confirmed (diesel propulsion and energy storage system).

Findings

The improvement of a component of an aircraft can play a relevant role in the whole system. In the paper, it is considered how a concept of MALE UAV can evolve (this topic is considered by the authors since many years) by incorporating advanced on-board systems concepts.

Practical implications

The numerical results promote and support the use of advanced on-board system solutions and architectures to improve the effectiveness, efficiency and performance of MALE UAVs.

Originality/value

Usually, conceptual and preliminary design phases analyze in-depth the aerodynamic and structural solutions and aircraft performance. In this study, the authors aim to focus on the advanced on-board systems for MALE UAVs. This kind of aircraft is not yet a mature concept, with very few operating machines and many projects in the development phase.

Details

Aircraft Engineering and Aerospace Technology, vol. 88 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 30 September 2014

A.T. Isikveren, S. Kaiser, C. Pornet and P.C. Vratny

The aim of this study was to first establish foundational algebraic expressions that parametrically describe any advanced dual-energy storage–propulsion–power system (DESPPS) and…

1026

Abstract

Purpose

The aim of this study was to first establish foundational algebraic expressions that parametrically describe any advanced dual-energy storage–propulsion–power system (DESPPS) and then proceed to declare the array of fundamental independent variables necessary for the sizing and optimisation of such systems. Upon procurement of a pre-design-level integrated aircraft performance model and the subsequent verification against previously published high-end low-fidelity generated results, opportunity was taken in formulating a set of battery-based DESPPS related design axioms and sizing heuristics.

Design/methodology/approach

Derivation of algebraic expressions related to describing DESPPS architectures are based on first principles. Integrated performance modelling by way of full analytical fractional change transformations anchored according to a previously published Energy Specific Air Range (ESAR) figure-of-merit originally derived using the Breguet–Coffin differential equation for vehicular efficiency. Weights prediction of sub-systems that constitute the entire aircraft including DESPPS constituents emphasises an analytical foundation with minimal implementation of linear correlation factors or coefficients of proportionality. An iterative maximum take-off weight build-up algorithm emphasising expedient and stable convergence was fashioned. All prediction methods pertaining to integrated performance were verified according to previously published battery-based DESPPS results utilising high-end low-fidelity methods.

Findings

For all types of DESPPS, two new fundamental independent non-dimensional variables were declared: the Supplied Power Ratio (related to converted power afforded by each energy carrier); and, the Activation Ratio (describing the relative nature of utilisation with respect to time afforded by the motive power device associated with each energy source). For a given set of standalone sub-system energy conversion efficiencies, the parametric descriptor of degree-of-hybridisation (DoH) for Power was found to be solely a function of the Supplied Power Ratio, whereas in contrast, the DoH for Energy was found to be a more complex synthetic function described by comingling of Supplied Power Ratio and the Activation Ratio. Upon examination of the integrated aircraft performance model derived in this treatise, for purposes of investigating CO2-emissions reduction potential for battery-based DESPPS using kerosene as one of the energy sources, one salient observation was maximising the ESAR figure-of-merit is not an appropriate objective or intermediary function for future optimisation work. It was found maximising block fuel reduction through the use of maximum ESAR would lead to ever diminishing design ranges and curtailment of the payload-range working capacity of the aircraft.

Practical implications

Opportunity is now given to design and optimise aircraft utilising any type of DESPPS architecture. It was established that designing for battery-based DESPPS aircraft can be achieved effectively in a two-stage process that may not require aircraft morphologies more exotic than the so-called “wing-and-tube”. Firstly, a suitably projected state-of-the-art aircraft with solely advanced gas-turbine technology for the propulsion and power system needs to be produced. Thereafter, a revised version of this baseline projected aircraft now using DESPPS architecture should be conceived. A recommendation related to CO2-emissions reduction potential for battery-based DESPPS using kerosene as one of the energy sources is that during optimisation work the multi-objective formulation should comprise at least two functions: block fuel and operating economics. In all instances, it was advised that the objective function of block fuel should be tempered by an equality constraint of ESAR parity with the baseline projected aircraft using gas-turbine only technology.

Originality/value

A complete, unified analytical description of DESPPS that is universally applicable to any type of energy carrier has been derived and verified for battery-based dual-energy systems. Correspondingly, a set of aircraft design axioms and sizing heuristics relevant to battery-based DESPPS have been presented.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 86 no. 6
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 1 May 1980

WALTER TYE

There are several improvements in prospect in the design of aircraft and engines which offer benefits to the amount of fuel used. Most are based on a solid background of research…

Abstract

There are several improvements in prospect in the design of aircraft and engines which offer benefits to the amount of fuel used. Most are based on a solid background of research, and therefore the potential gains are fairly predictable. However, it is also true that most of the advances will need considerable development work to bring them to a point of readiness for introduction in design. The advances described below are ones which might reasonably be expected to be introduced into new designs in the mid‐1980s.

Details

Aircraft Engineering and Aerospace Technology, vol. 52 no. 5
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 11 January 2008

Robert S. D'Intino, Trish Boyles, Christopher P. Neck and John R. Hall

In the early twenty‐first century organization scholars and managers face an economic outlook full of daunting challenges. With investors, workers, and other stakeholders…

6500

Abstract

Purpose

In the early twenty‐first century organization scholars and managers face an economic outlook full of daunting challenges. With investors, workers, and other stakeholders distressed and hostile toward corporate executives and boards due to recent corporate scandals, the future for many industries and firms appears grim. In what ways can business history help corporate managers and new venture entrepreneurs overcome these leadership challenges? This paper seeks to uncover practices throughout the Boeing Company's management history that offer today's executives and board members numerous examples of industry vision and leadership.

Design/methodology/approach

Visionary leadership theory is used to help understand Boeing's actions. A theory of visionary entrepreneurial leadership is proposed based on Boeing's history. Four specific cases of aircraft design and development decisions and actions are presented as examples of executive and board directors' vision and leadership.

Findings

Boeing has served as the aircraft industry's innovator and leader for over nine decades by designing and building path‐breaking airplanes when no other aircraft manufacturer would venture similar risks to their reputation and capital. Furthermore, Boeing executives and board directors have repeatedly made risky decisions that – if the prototype literately crashed and burned – would probably bankrupt the company. Management's vision was always on the next great airplane, never on individual image or personal wealth.

Research limitations/implications

Future research directions are presented suggesting a focus on firm executives and boards of directors' decisions and how these decisions influence industry wide innovation and development.

Originality/value

The paper analyses the leadership attributes of Boeing executives over the last nine decades.

Details

Journal of Management History, vol. 14 no. 1
Type: Research Article
ISSN: 1751-1348

Keywords

Article
Publication date: 1 September 1956

K.L.C. Legg

A review is made of existing and likely future aircraft materials and their choice for use on airframes is discussed in relation to the problems of advanced aircraft design. Both…

Abstract

A review is made of existing and likely future aircraft materials and their choice for use on airframes is discussed in relation to the problems of advanced aircraft design. Both technological and production problems arc included and it is finally suggested that urgent governmental action is required to remedy Great Britain's grave lack of suitable capital equipment.

Details

Aircraft Engineering and Aerospace Technology, vol. 28 no. 9
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 14 April 2020

Axel Yezeguelian and Askin T. Isikveren

When comparing and contrasting different types of fixed-wing military aircraft on the basis of an energetic efficiency figure-of-merit, unmanned aerial vehicles (UAVs) dedicated…

Abstract

Purpose

When comparing and contrasting different types of fixed-wing military aircraft on the basis of an energetic efficiency figure-of-merit, unmanned aerial vehicles (UAVs) dedicated to tactical medium-altitude long-endurance (MALE) operations appear to have significant potential when hybrid-electric propulsion and power systems (HEPPS) are implemented. Beginning with a baseline Eulair drone, this paper aims to examine the feasibility of retro-fitting with an Autarkic-Parallel-HEPPS architecture to enhance performance of the original single diesel engine.

Design/methodology/approach

In view of the low gravimetric specific energy performance attributes of batteries in the foreseeable future, the best approach was found to be one in which the Parallel-HEPPS architecture has the thermal engine augmented by an organic rankine cycle (ORC). For this study, with the outer mould lines fixed, the goal was to increase endurance without increasing the Eulair drone maximum take-off weight beyond an upper limit of +10%. The intent was to also retain take-off distance and climb performance or, where possible, improve upon these aspects. Therefore, as the focus of the work was on power scheduling, two primary control variables were identified as degree-of-hybridisation for useful power and cut-off altitude during the en route climb phase. Quasi-static methods were used for technical sub-space modelling, and these modules were linked into a constrained optimisation algorithm.

Findings

Results showed that an Autarkic-Parallel-HEPPS architecture comprising an ORC thermal energy recovery apparatus and high-end year-2020 battery, the endurance of the considered aircraft could be increased by 11%, i.e. a total of around 28 h, including de-icing system, in-flight recharge and emergency aircraft recovery capabilities. The same aircraft with the de-icing functionality removed resulted in a 20% increase in maximum endurance to 30 h.

Practical implications

Although the adoption of Series/Parallel-HEPPS only solutions do tend to generate questionable improvements in UAV operational performance, combinations of HEPPS with energy recovery machines that use, for example, an ORC, were found to have merit. Furthermore, such architectural solutions could also offer opportunity to facilitate additional functions like de-icing and emergency aircraft recovery during engine failure, which is either not available for UAVs today or prove to be prohibitive in terms of operational performance attributes when implemented using a conventional PPS approach.

Originality/value

This technical paper highlights a new degree of freedom in terms of power scheduling during climbing transversal flight operations. A control parameter of cut-off altitude for all types of HEPPS-based aircraft should be introduced into the technical decision-making/optimisation/analysis scheme and is seen to be a fundamental aspect when conducting trade-studies with respect to degree-of-hybridisation for useful power.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 5
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 July 2017

Jacek Mieloszyk

The paper aims to apply numerical optimization to the aircraft design procedures applied in the airspace industry.

Abstract

Purpose

The paper aims to apply numerical optimization to the aircraft design procedures applied in the airspace industry.

Design/methodology/approach

It is harder than ever to achieve competitive construction. This is why numerical optimization is becoming a standard tool during the design process. Although optimization procedures are becoming more mature, yet in the industry practice, fairly simple examples of optimization are present. The more complicated is the task to solve, the harder it is to implement automated optimization procedures. This paper presents practical examples of optimization in aerospace sciences. The methodology is discussed in the article in great detail.

Findings

Encountered problems related to the numerical optimization are presented. Different approaches to the solutions of the problems are shown, which have impact on the time of optimization computations and quality of the obtained optimum. Achieved results are discussed in detail with relation to the used settings.

Practical implications

Investigated different aspects of handling optimization problems, improving quality of the obtained optimum or speeding-up optimization by parallel computations can be directly applied in the industry optimization practice. Lessons learned from multidisciplinary optimization can bring industry products to higher level of performance and quality, i.e. more advanced, competitive and efficient aircraft design procedures, which could be applied in the industry practice. This can lead to the new approach of aircraft design process.

Originality/value

Introduction of numerical optimization methods in aircraft design process. Showing how to solve numerical optimization problems related to advanced cases of conceptual and preliminary aircraft design.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 4
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 March 2021

Anatolii Kretov

The purpose of this work is to further develop the methodology for calculating the aircraft take-off mass and its main functional components for the conceptual analysis and…

Abstract

Purpose

The purpose of this work is to further develop the methodology for calculating the aircraft take-off mass and its main functional components for the conceptual analysis and synthesis of new projects.

Design/methodology/approach

The method is based on the assessment of changes in the take-off gross mass (TOGM) of the already developed project or already existing a basic version of the aircraft when making local mass changes for its modification or for the numerical researches to create a more advanced project. The method is based on the “sensitivity factors of mass” (SFM) of aircraft, which represents the ratio of TOGM to initial (local) mass changes of its main functional components. The method of analytical refined calculation of SFM for the initial mass change and the main aerodynamic characteristics is given.

Findings

In comparison with the long-known method based on weight (mass) growth factors, which were considered constant, this method takes into account the dependence from the value of the initial local mass change and its functional purpose.

Practical implications

This method allows the designer to calculate more strictly the final changes in the TOGM on the initial stages of conceptual design when finding new project solutions. Numerical calculations are given on the example of passenger aircraft. The dependence of SFM and TOGM and its functional masses on the value of the initial change of the structure mass are shown. This method is used in the educational process at the college of Aerospace Engineering in the Aircraft Design department.

Originality/value

The considered method based on SFM is simple and convenient and more accurate for conducting project research on many project parameters when analyzing and synthesizing a new project.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 9
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 9 April 2018

Harijono Djojodihardjo

The purpose of this paper is to explore the possibilities of introducing a number of visionary and pioneering ideas and upcoming enabling technologies for a conceptual and…

Abstract

Purpose

The purpose of this paper is to explore the possibilities of introducing a number of visionary and pioneering ideas and upcoming enabling technologies for a conceptual and aerodynamic design of green business jet aircraft to meet various requirements within Green and N + 2 Aircraft framework, and at the same time, to meet the requirements of air transportation demand, economic growth and environmental conservation.

Design/methodology/approach

A synthesis of various aircraft design methodologies has been carried out through iterative optimization to arrive at the conceptually designed aircraft with novel concept with optimum performance within the subsonic flight regimes. Major ideas derived from D8 and other novel concepts are appropriately applied in the work, which starts with fuel efficient motivation, and followed by wing aerodynamics and other critical factors related to the design requirements and objectives.

Findings

Through a meticulous effort following the synthesized design methodologies in the conceptual design phase, a conceptual design of a quad-bubble business jets with a set of specifications that meet the green and N + 2 aircraft technology requirements and exhibit promising performances is proposed and assessed within recent aircraft technology development.

Research limitations/implications

The research work is limited to conceptual design and analytical work which should be followed by further iterative steps incorporating experiments and detailed structural and aerodynamic computations.

Practical implications

The conceptual design proposed can be utilized as a baseline for further practical step in an aircraft development project.

Social implications

The conceptual design proposed could be utilized for business and economic study for future air transportation system.

Originality/value

The work is original, incorporating review of state-of-the-art technology, environmental requirements and a synthesis of a novel product.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 1 September 1980

It is to be regretted that, this year, hardly any information was received from the public relations department of SBAC despite numerous requests.

Abstract

It is to be regretted that, this year, hardly any information was received from the public relations department of SBAC despite numerous requests.

Details

Aircraft Engineering and Aerospace Technology, vol. 52 no. 9
Type: Research Article
ISSN: 0002-2667

1 – 10 of over 11000