Search results

1 – 6 of 6
Article
Publication date: 1 August 2023

Veysi Ökten, Reşit Yıldız and Gökmen Sığırcık

This study aims to prevent mild steel (MS) against corrosion in 0.5 M HCl solution, 2-amino-4-methoxy-6-methyl-1,3,5-triazine was used. The effectiveness of the compound as a…

Abstract

Purpose

This study aims to prevent mild steel (MS) against corrosion in 0.5 M HCl solution, 2-amino-4-methoxy-6-methyl-1,3,5-triazine was used. The effectiveness of the compound as a corrosion inhibitor was studied via electrochemical, surface and theoretical calculation techniques.

Design/methodology/approach

For concentrations ranging from 0.5 to 10.0 mM, almost similar polarization resistances were obtained from electrochemical impedance spectroscopy (EIS) and linear polarization resistance tests. It also investigated inhibitive activity of 2-amino-4-methoxy-6-methyl-1,3,5-triazine on the steel surface using scanning electron and atomic force microscope instruments. Langmuir adsorption is the best matched isotherm for the adsorption of the inhibitor to the steel surface.

Findings

EIS method was used to determine inhibition efficiency, which was determined to be 95.7% for 10.0 mM inhibitor containing acid solution. Density functional theory’s predictions for quantum chemistry agreed well with the other experimental results.

Originality/value

The methods used in this study are effective and applicable; the used organic inhibitor is 2-amino-4-methoxy-6-methyl-1,3,5-triazine; and protective effectiveness is important, which is crucial for the task of MS corrosion prevention.

Details

Anti-Corrosion Methods and Materials, vol. 70 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 February 2024

Junghee Han

Quite often than not, a new industry can be created, thanks to the countless entrepreneurs and innovative activities across the globe. Smart city (SC) is one such industry and a…

Abstract

Purpose

Quite often than not, a new industry can be created, thanks to the countless entrepreneurs and innovative activities across the globe. Smart city (SC) is one such industry and a living lab using the key roles of the digital platform that enable a seamless flow of information and knowledge for innovation within the SC. The purpose of this paper is to illustrate how SC can be a new regional industry engine through an “open collective innovation system” as its new concept. In particular, SC provides efficient transaction costs and knowledge flows. Eventually, SC can be an innovation hub for entrepreneurship through openness.

Design/methodology/approach

To frame the research goals, the authors used qualitative research methodologies based on grounded theory. In particular, the author used inductive reasoning to generate arguments and conclusions about the future of an SC as a new growth engine in the era of the fourth industrial revolution. Numerous documents and prior literature were used for the preliminary conceptualization of an SC. Interview data were then coded for reasoning in an open collective innovation system based on “openness”.

Findings

SC maximizes efficiency in practicing innovation. In the perspective of innovation costs, SC can minimize transaction costs, specifically the information processing costs, through data openness. In this context, transaction costs can be considered an economic equivalent of friction in a physical system. So, as the friction is low, some movements of an object on the surface are likely to be easy. SC is optimized for innovation activities through an “open collective innovation system”. In terms of innovation networks, an SC results in an innovation efficiency derived from both the network and the spatial agglomerations in physical and cyberspace. The efficiency-based SC itself overlaps knowledge creation, dissemination and absorption, providing an open innovation (OI) ecosystem.

Research limitations/implications

This paper remarkably extends that SC can be an “open collective innovation system model” and a new conceptualization. Eventually, SC will play a crucial role in developing regional industries as a new growth engine. To operate as a new growth engine fully-fledged, the SC is needed to accumulate innovative assets such as the critical mass of residents, numerous firms, etc. However, this study has some limitations. First, difficulties in any analytic approach to SC resulted from their many interdependent facets, such as social, economic, infrastructural and spatial complex systems, which exist in similar but changing forms over a huge range of scales. Also, this research is at a quite an early stage. Thus, its theoretical stability is weak. So, this paper used the qualitative methodology with a grounded theory. Another limitation is in the research methodology. The limitation of using grounded theory adapted by this work is that the results of this study may not be generalizable beyond the context of this study. This non-generalizability occurs because ours is an inductive approach to research, meaning that the findings are based on data collected and analyzed. As such, the results of this study may not be applicable to other contexts or situations. In addition, the analysis of data in the grounded theory is based on researcher’s subjective interpretations. This means that the researcher’s own biases, preferences and assumptions may influence the results of the study. The quality of the data collected is another potential limitation. If the data is incomplete or of poor quality, it can cause researcher’s own subjective interpretations.

Practical implications

Findings of this study have some practical implications for enterprises, practitioners and governors. First, firms should use value networks instead of value chains. Notably, the firms that pursue new products or services or startups that try to find a new venture business should take full advantage of SC. This taking advantage is possible because SC not only adapts state-of-the-art information technology (e.g. sensor devices, open data analytics, IoT and fiber optic networks) but also facilitates knowledge flow (e.g. between universities, research centers, knowledge-based partner firms and public agencies). More importantly, with globalized market competition in recent years, sustainability for firms is a challenging issue. In this respect, managers can take the benefits of SC into consideration for strategic decisions for sustainability. Specifically, industrial practitioners who engage in innovation activities have capabilities of network-related technologies (e.g. data analysis, AI, IoT and sensor networks). By using these technologies in an SC, enterprises can keep existing customers as well as attract potential customers. Lastly, the findings of this study contribute to policy implementation in many aspects. At first, for SC to become a growth engine at regional or natural levels, strong policy implementation is crucial because SC is widely regarded as a means of entrepreneurship and an innovation plaza (Kraus et al., 2015). To facilitate entrepreneurship, maker spaces used for making the prototypes to support entrepreneurial process were setup within universities. The reason for establishing maker spaces in universities is to expand networking between entrepreneurs and experts and lead to innovation through a value network. One of the policy instruments that can be adapted is the “Data Basic Income Scheme” suggested by this research to boost the usage of data, providing content and information for doing business. Also, a governor in SC as an intermediator for the process of the knowledge flow should initiate soft configuration for SC.

Social implications

This work makes two theoretical contributions to OI aspects: (1) it explores dynamic model archetypes; and (2) it articulates and highlights how SC with digital technology (i.e. in the AI, IoT and big data context) can be used to create collective knowledge flow efficiently. First, the findings of this study shed light on the OI dynamic model. It reveals important archetypes of new sub-clustering creation, namely, a system that underpins the holistic process of innovation by categorization in amongst the participating value network (Aguilar-Gallegos et al., 2015). In innovation studies, scholars have particularly paid attention to a cluster’s evolution model. In the process of innovation, the “open innovation dynamic model” suggested by this study illustrates sub-clustering that happens in value networks by taking the benefits of SC. Eventually, the evolution or development of sub-clusters can bring in a new system, namely, an OI system. Second, the findings of this study contribute to the understanding of the role of digital technologies in promoting knowledge flow. The usage and deployment of digital technologies in SC may enormously and positively influence innovative activities for participants. Furthermore, the rising of digital economy, in the so-called platform business, may occur depending on advanced technologies and OI. In doing so, the findings can further tow innovation research through juxtaposition between SC and innovation research (Mehra et al., 2021).

Originality/value

This paper shows that the function of an SC not only improves the quality of life but also acts as an engine of new industry through an open collective innovation setting using dynamic and ecological models.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Book part
Publication date: 18 January 2024

Ackmez Mudhoo, Gaurav Sharma, Khim Hoong Chu and Mika Sillanpää

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However…

Abstract

Adsorption parameters (e.g. Langmuir constant, mass transfer coefficient and Thomas rate constant) are involved in the design of aqueous-media adsorption treatment units. However, the classic approach to estimating such parameters is perceived to be imprecise. Herein, the essential features and performances of the ant colony, bee colony and elephant herd optimisation approaches are introduced to the experimental chemist and chemical engineer engaged in adsorption research for aqueous systems. Key research and development directions, believed to harness these algorithms for real-scale water treatment (which falls within the wide-ranging coverage of the Sustainable Development Goal 6 (SDG 6) ‘Clean Water and Sanitation for All’), are also proposed. The ant colony, bee colony and elephant herd optimisations have higher precision and accuracy, and are particularly efficient in finding the global optimum solution. It is hoped that the discussions can stimulate both the experimental chemist and chemical engineer to delineate the progress achieved so far and collaborate further to devise strategies for integrating these intelligent optimisations in the design and operation of real multicomponent multi-complexity adsorption systems for water purification.

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 25 March 2024

Fatemeh Mollaamin and Majid Monajjemi

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Abstract

Purpose

This study aims to investigate the potential of the decorated boron nitride nanocage (BNNc) with transition metals for capturing carbon monoxide (CO) as a toxic gas in the air.

Design/methodology/approach

BNNc was modeled in the presence of doping atoms of titanium (Ti), vanadium (V), chromium (Cr), cobalt (Co), copper (Cu) and zinc (Zn) which can increase the gas sensing ability of BNNc. In this research, the calculations have been accomplished by CAM–B3LYP–D3/EPR–3, LANL2DZ level of theory. The trapping of CO molecules by (Ti, V, Cr, Co, Cu, Zn)–BNNc has been successfully incorporated because of binding formation consisting of C → Ti, C → V, C → Cr, C → Co, C → Cu, C → Zn.

Findings

Nuclear quadrupole resonance data has indicated that Cu-doped or Co-doped on pristine BNNc has high fluctuations between Bader charge versus electric potential, which can be appropriate options with the highest tendency for electron accepting in the gas adsorption process. Furthermore, nuclear magnetic resonance spectroscopy has explored that the yield of electron accepting for doping atoms on the (Ti, V, Cr, Co, Cu, Zn)–BNNc in CO molecules adsorption can be ordered as follows: Cu > Co >> Cr > Zn ˜ V> Ti that exhibits the strength of the covalent bond between Ti, V, Cr, Co, Cu, Zn and CO. In fact, the adsorption of CO gas molecules can introduce spin polarization on the (Ti, V, Cr, Co, Cu, Zn)–BNNc which specifies that these surfaces may be used as magnetic-scavenging surface as a gas detector. Gibbs free energy based on IR spectroscopy for adsorption of CO molecules adsorption on the (Ti, V, Cr, Co, Cu, Zn)–BNNc have exhibited that for a given number of carbon donor sites in CO, the stabilities of complexes owing to doping atoms of Ti, V, Cr, Co, Cu, Zn can be considered as: CO →Cu–BNNc >> CO → Co–BNNc > CO → Cr–BNNc > CO → V–BNNc > CO → Zn–BNNc > CO → Ti–BNNc.

Originality/value

This study by using materials modeling approaches and decorating of nanomaterials with transition metals is supposed to introduce new efficient nanosensors in applications for selective sensing of carbon monoxide.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 7 February 2024

Kai Cao, Guodong Qin, Jian Zhou, Jiajun Xu, Linsen Xu and Aihong Ji

With the popularity of high-rise buildings, wall inspection and cleaning are becoming more difficult and associated with danger. The best solution is to replace manual work with…

Abstract

Purpose

With the popularity of high-rise buildings, wall inspection and cleaning are becoming more difficult and associated with danger. The best solution is to replace manual work with wall-climbing robots. Therefore, this paper proposes a design method for a rolling-adsorption wall-climbing robot (RWCR) based on vacuum negative pressure adsorption of the crawler. It can improve the operation efficiency while solving the safety problems.

Design/methodology/approach

The pulleys and tracks are used to form a dynamic sealing chamber to improve the dynamic adsorption effect and motion flexibility of the RWCR. The mapping relationship between the critical minimum adsorption force required for RWCR downward slip, longitudinal tipping and lateral overturning conditions for tipping and the wall inclination angle is calculated using the ultimate force method. The pressure and gas flow rate distribution of the negative pressure chamber under different slit heights of the negative pressure mechanism is analysed by the fluid dynamics software to derive the minimum negative pressure value that the fan needs to provide.

Findings

Simulation and test results show that the load capacity of the RWCR can reach up to 6.2 kg on the smooth glass wall, and the maximum load in the case of lateral movement is 4.2 kg, which verifies the rationality and effectiveness of the design.

Originality/value

This paper presents a new design method of a RWCR for different rough wall surfaces and analyses the ultimate force state and hydrodynamic characteristics.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 24 April 2024

Ali Hassanzadeh, Ebrahim Ghorbani-Kalhor, Khalil Farhadi and Jafar Abolhasani

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Abstract

Purpose

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Design/methodology/approach

Sodium silicate is adopted as a substrate for GO and AgNPs with positive charge are used as modifiers. The synthesized nanocomposite is characterized by FTIR, FESEM, EDS, BET and XRD techniques. Then, some of the most effective parameters on the removal of CR and MB dyes such as solution pH, sorbent dose, adsorption equilibrium time, primary dye concentration and salt effect are optimized using the spectrophotometry technique.

Findings

The authors successfully achieved notable maximum adsorption capacities (Qmax) of CR and MB, which were 41.15 and 37.04 mg g−1, respectively. The required equilibrium times for maximum efficiency of the developed sorbent were 10 and 15 min for CR and MB dyes, respectively. Adsorption equilibrium data present a good correlation with Langmuir isotherm, with a correlation coefficient of R2 = 0.9924 for CR and R2 = 0.9904 for MB, and kinetic studies prove that the dye adsorption process follows pseudo second-order models (CR R2 = 0.9986 and MB R2 = 0.9967).

Practical implications

The results showed that the proposed mechanism for the function of the developed sorbent in dye adsorption was based on physical and multilayer adsorption for both dyes onto the active sites of non-homogeneous sorbent.

Originality/value

The as-prepared nano-adsorbent has a high ability to remove both cationic and anionic dyes; moreover, to the high efficiency of the adsorbent, it has been tried to make its synthesis steps as simple as possible using inexpensive and available materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 6 of 6