Search results

1 – 10 of 355
Article
Publication date: 1 June 1992

K.Y. SZE and A. GHALI

An 8‐node solid element applicable for thin structures is presented. The element employs eighteen assumed stress modes and the conventional displacement interpolation. The…

Abstract

An 8‐node solid element applicable for thin structures is presented. The element employs eighteen assumed stress modes and the conventional displacement interpolation. The formulation starts with the hybrid stress element proposed by Pian and Tong. The higher order stress modes are first decomposed into the ones which do and do not lead to thin‐element locking. The recently established methodology of admissible matrix formulation allows the decoupling of the above two categories of stress modes in the flexibility matrix without triggering element instability or failure of the patch test. The element stiffness can thus be decomposed into a series of matrices. Locking can be eliminated by adjusting the magnitude of the pertinent matrices. Accuracy and convergence rate of the present element are found to be competent to many of the existing plate and shell models.

Details

Engineering Computations, vol. 9 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 1999

K.Y. Sze and S.H. Lo

In this paper, a hybrid stress 12‐node brick element is presented. Its assumed stress field is derived by first examining the deformation modes of a geometrically regular element…

Abstract

In this paper, a hybrid stress 12‐node brick element is presented. Its assumed stress field is derived by first examining the deformation modes of a geometrically regular element and then generalizing to other element configurations using tensorial transformation. The total number of stress modes is 30 which is minimal for securing the element rank. To reduce the computational cost associated with the fully populated flexibility matrix, the admissible matrix formation is employed to induce high sparsity in the matrix. Popular beam bending benchmark problems are examined. The proposed elements deliver encouraging accuracy.

Details

Engineering Computations, vol. 16 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 January 1994

Shenglin Di and Ekkehard Ramm

Based on the recent advances of hybrid stress finite elements, a seriesof alternative stress assumptions for these elements are investigated.Several new element models are…

Abstract

Based on the recent advances of hybrid stress finite elements, a series of alternative stress assumptions for these elements are investigated. Several new element models are proposed by using different concepts for the stress interpolation. Under a unified formulation presented in this paper for Hellinger—Reissner principle based hybrid stress element models, the element series 5β‐family for plane stress and 18β‐family for three‐dimensional problems are discussed. The extra incompatible displacements sometimes also added are not introduced in this unified formulation. A number of popular benchmark elastic problems are examined for both two element families. In each family, the element model presented in this paper using normalized transformed higher order stress trials usually gives better predictions than the others.

Details

Engineering Computations, vol. 11 no. 1
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 June 2019

Qing Xie, Yucai Hu, Yexin Zhou and Wanshui Han

Poor bending response is a major shortcoming of lower-order elements due to excessive representation of shear stress/strain field. Advanced finite element (FE) formulations for…

Abstract

Purpose

Poor bending response is a major shortcoming of lower-order elements due to excessive representation of shear stress/strain field. Advanced finite element (FE) formulations for classical elasticity enhance the bending response by either nullifying or filtering some of the symmetric shear stress/strain modes. Nevertheless, the stress/strain field in Cosserat elasticity is asymmetric; consequently any attempt to nullify or filter the anti-symmetric shear stress/strain modes may lead to failure in the constant couple-stress patch test where the anti-symmetric shear stress/strain field is linear. This paper aims at enhancing the bending response of lower-order elements for Cosserat elasticity problems.

Design/methodology/approach

A four-node quadrilateral and an eight-node hexahedron are formulated by hybrid-stress approach. The symmetric stress is assumed as those of Pian and Sumihara and Pian and Tong. The anti-symmetric stress components are first assumed to be completely linear in order to pass the constant couple-stress patch test. The linear modes are then constrained with respect to the prescribed body-couple via the equilibrium conditions.

Findings

Numerical tests show that the hybrid elements can strictly pass the constant couple-stress patch test and are markedly more accurate than the conventional elements as well as the incompatible elements for bending problems in Cosserat elasticity.

Originality/value

This paper proposes a hybrid FE formulation to improve the bending response of four-node quadrilateral and eight-node hexahedral elements for Cosserat elasticity problems without compromising the constant couple-stress patch test.

Details

Engineering Computations, vol. 36 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 June 2020

Tiago Oliveira, Wilber Vélez and Artur Portela

This paper is concerned with new formulations of local meshfree and finite element numerical methods, for the solution of two-dimensional problems in linear elasticity.

Abstract

Purpose

This paper is concerned with new formulations of local meshfree and finite element numerical methods, for the solution of two-dimensional problems in linear elasticity.

Design/methodology/approach

In the local domain, assigned to each node of a discretization, the work theorem establishes an energy relationship between a statically admissible stress field and an independent kinematically admissible strain field. This relationship, derived as a weighted residual weak form, is expressed as an integral local form. Based on the independence of the stress and strain fields, this local form of the work theorem is kinematically formulated with a simple rigid-body displacement to be applied by local meshfree and finite element numerical methods. The main feature of this paper is the use of a linearly integrated local form that implements a quite simple algorithm with no further integration required.

Findings

The reduced integration, performed by this linearly integrated formulation, plays a key role in the behavior of local numerical methods, since it implies a reduction of the nodal stiffness which, in turn, leads to an increase of the solution accuracy and, which is most important, presents no instabilities, unlike nodal integration methods without stabilization. As a consequence of using such a convenient linearly integrated local form, the derived meshfree and finite element numerical methods become fast and accurate, which is a feature of paramount importance, as far as computational efficiency of numerical methods is concerned. Three benchmark problems were analyzed with these techniques, in order to assess the accuracy and efficiency of the new integrated local formulations of meshfree and finite element numerical methods. The results obtained in this work are in perfect agreement with those of the available analytical solutions and, furthermore, outperform the computational efficiency of other methods. Thus, the accuracy and efficiency of the local numerical methods presented in this paper make this a very reliable and robust formulation.

Originality/value

Presentation of a new local mesh-free numerical method. The method, linearly integrated along the boundary of the local domain, implements an algorithm with no further integration required. The method is absolutely reliable, with remarkably-accurate results. The method is quite robust, with extremely-fast computations.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 5
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 1 March 1994

H.S. Yu, S.W. Sloan and P.W. Kleeman

This paper presents a new finite element formulation of the upper bound theorem. The formulation uses a six‐noded linear strain triangular element. Each node has two unknown…

Abstract

This paper presents a new finite element formulation of the upper bound theorem. The formulation uses a six‐noded linear strain triangular element. Each node has two unknown velocities and each corner of a triangle is associated with a specified number of unknown plastic multiplier rates. The major advantage of using a linear strain element, rather than a constant strain element, is that the velocity field can be modelled more accurately. In addition, the incompressibility condition can be easily satisfied without resorting to special arrangements of elements in the mesh. The formulation permits kinematically admissible velocity discontinuities at specified locations within the finite element mesh. To ensure that finite element formulation of the upper bound theorem leads to a linear programming problem, the yield criterion is expressed as a linear function of the stresses. The linearized yield surface is defined to circumscribe the parent yield surface so that the solution obtained is a rigorous upper bound. During the solution phase, an active set algorithm is used to solve the resulting linear programming problem. Several numerical examples are given to illustrate the capability of the new procedure for computing rigorous upper bounds. The efficiency and accuracy of the quadratic formulation is compared with that of the 3‐noded constant strain formulation in detail.

Details

Engineering Computations, vol. 11 no. 3
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 March 2022

Farzad Shafiei Dizaji and Mehrdad Shafiei Dizaji

The purpose is to reduce round-off errors in numerical simulations. In the numerical simulation, different kinds of errors may be created during analysis. Round-off error is one…

Abstract

Purpose

The purpose is to reduce round-off errors in numerical simulations. In the numerical simulation, different kinds of errors may be created during analysis. Round-off error is one of the sources of errors. In numerical analysis, sometimes handling numerical errors is challenging. However, by applying appropriate algorithms, these errors are manageable and can be reduced. In this study, five novel topological algorithms were proposed in setting up a structural flexibility matrix, and five different examples were used in applying the proposed algorithms. In doing so round-off errors were reduced remarkably.

Design/methodology/approach

Five new algorithms were proposed in order to optimize the conditioning of structural matrices. Along with decreasing the size and duration of analyses, minimizing analytical errors is a critical factor in the optimal computer analysis of skeletal structures. Appropriate matrices with a greater number of zeros (sparse), a well structure and a well condition are advantageous for this objective. As a result, a problem of optimization with various goals will be addressed. This study seeks to minimize analytical errors such as rounding errors in skeletal structural flexibility matrixes via the use of more consistent and appropriate mathematical methods. These errors become more pronounced in particular designs with ill-suited flexibility matrixes; structures with varying stiffness are a frequent example of this. Due to the usage of weak elements, the flexibility matrix has a large number of non-diagonal terms, resulting in analytical errors. In numerical analysis, the ill-condition of a matrix may be resolved by moving or substituting rows; this study examined the definition and execution of these modifications prior to creating the flexibility matrix. Simple topological and algebraic features have been mostly utilized in this study to find fundamental cycle bases with particular characteristics. In conclusion, appropriately conditioned flexibility matrices are obtained, and analytical errors are reduced accordingly.

Findings

(1) Five new algorithms were proposed in order to optimize the conditioning of structural flexibility matrices. (2) A JAVA programming language was written for all five algorithms and a friendly GUI software tool is developed to visualize sub-optimal cycle bases. (3) Topological and algebraic features of the structures were utilized in this study.

Research limitations/implications

This is a multi-objective optimization problem which means that sparsity and well conditioning of a matrix cannot be optimized simultaneously. In conclusion, well-conditioned flexibility matrices are obtained, and analytical errors are reduced accordingly.

Practical implications

Engineers always finding mathematical modeling of real-world problems and make them as simple as possible. In doing so, lots of errors will be created and these errors could cause the mathematical models useless. Applying decent algorithms could make the mathematical model as precise as possible.

Social implications

Errors in numerical simulations should reduce due to the fact that they are toxic for real-world applications and problems.

Originality/value

This is an original research. This paper proposes five novel topological mathematical algorithms in order to optimize the structural flexibility matrix.

Details

Engineering Computations, vol. 39 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 20 April 2015

Yixiong Wei, Qifu Wang, Yunbao Huang, Yingjun Wang and Zhaohui Xia

The purpose of this paper is to present a novel strategy used for acceleration of free-vibration analysis, in which the hierarchical matrices structure and Compute Unified Device…

Abstract

Purpose

The purpose of this paper is to present a novel strategy used for acceleration of free-vibration analysis, in which the hierarchical matrices structure and Compute Unified Device Architecture (CUDA) platform is applied to improve the performance of the traditional dual reciprocity boundary element method (DRBEM).

Design/methodology/approach

The DRBEM is applied in forming integral equation to reduce complexity. In the procedure of optimization computation, ℋ-Matrices are introduced by applying adaptive cross-approximation method. At the same time, this paper proposes a high-efficiency parallel algorithm using CUDA and the counterpart of the serial effective algorithm in ℋ-Matrices for inverse arithmetic operation.

Findings

The analysis for free-vibration could achieve impressive time and space efficiency by introducing hierarchical matrices technique. Although the serial algorithm based on ℋ-Matrices could obtain fair performance for complex inversion operation, the CUDA parallel algorithm would further double the efficiency. Without much loss in accuracy according to the examination of the numerical example, the relative error appeared in approximation process can be fixed by increasing degrees of freedoms or introducing certain amount of internal points.

Originality/value

The paper proposes a novel effective strategy to improve computational efficiency and decrease memory consumption of free-vibration problems. ℋ-Matrices structure and parallel operation based on CUDA are introduced in traditional DRBEM.

Details

Engineering Computations, vol. 32 no. 2
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 November 2003

R.J. Alves de Sousa, R.M. Natal Jorge, R.A. Fontes Valente and J.M.A. César de Sá

This paper focuses on the development of a new class of eight‐node solid finite elements, suitable for the treatment of volumetric and transverse shear locking problems. Doing so…

2458

Abstract

This paper focuses on the development of a new class of eight‐node solid finite elements, suitable for the treatment of volumetric and transverse shear locking problems. Doing so, the proposed elements can be used efficiently for 3D and thin shell applications. The starting point of the work relies on the analysis of the subspace of incompressible deformations associated with the standard (displacement‐based) fully integrated and reduced integrated hexahedral elements. Prediction capabilities for both formulations are defined related to nearly‐incompressible problems and an enhanced strain approach is developed to improve the performance of the earlier formulation in this case. With the insight into volumetric locking gained and benefiting from a recently proposed enhanced transverse shear strain procedure for shell applications, a new element conjugating both the capabilities of efficient solid and shell formulations is obtained. Numerical results attest the robustness and efficiency of the proposed approach, when compared to solid and shell elements well‐established in the literature.

Details

Engineering Computations, vol. 20 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 10 of 355