Search results

1 – 10 of over 12000
Open Access
Article
Publication date: 29 February 2024

Guanchen Liu, Dongdong Xu, Zifu Shen, Hongjie Xu and Liang Ding

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous…

Abstract

Purpose

As an advanced manufacturing method, additive manufacturing (AM) technology provides new possibilities for efficient production and design of parts. However, with the continuous expansion of the application of AM materials, subtractive processing has become one of the necessary steps to improve the accuracy and performance of parts. In this paper, the processing process of AM materials is discussed in depth, and the surface integrity problem caused by it is discussed.

Design/methodology/approach

Firstly, we listed and analyzed the characterization parameters of metal surface integrity and its influence on the performance of parts and then introduced the application of integrated processing of metal adding and subtracting materials and the influence of different processing forms on the surface integrity of parts. The surface of the trial-cut material is detected and analyzed, and the surface of the integrated processing of adding and subtracting materials is compared with that of the pure processing of reducing materials, so that the corresponding conclusions are obtained.

Findings

In this process, we also found some surface integrity problems, such as knife marks, residual stress and thermal effects. These problems may have a potential negative impact on the performance of the final parts. In processing, we can try to use other integrated processing technologies of adding and subtracting materials, try to combine various integrated processing technologies of adding and subtracting materials, or consider exploring more efficient AM technology to improve processing efficiency. We can also consider adopting production process optimization measures to reduce the processing cost of adding and subtracting materials.

Originality/value

With the gradual improvement of the requirements for the surface quality of parts in the production process and the in-depth implementation of sustainable manufacturing, the demand for integrated processing of metal addition and subtraction materials is likely to continue to grow in the future. By deeply understanding and studying the problems of material reduction and surface integrity of AM materials, we can better meet the challenges in the manufacturing process and improve the quality and performance of parts. This research is very important for promoting the development of manufacturing technology and achieving success in practical application.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2633-6596

Keywords

Article
Publication date: 8 January 2020

Micheal Omotayo Alabi, Deon Johan de Beer, Harry Wichers and Cornelius P. Kloppers

In this era of Fourth Industrial Revolution, also known as Industry 4.0, additive manufacturing (AM) has been recognized as one of the nine technologies of Industry 4.0 that will…

Abstract

Purpose

In this era of Fourth Industrial Revolution, also known as Industry 4.0, additive manufacturing (AM) has been recognized as one of the nine technologies of Industry 4.0 that will revolutionize different sectors (such as manufacturing and industrial production). Therefore, this study aims to focus on “Additive Manufacturing Education” and the primary aim of this study is to investigate the impacts of AM technology at selected South African universities and develop a proposed framework for effective AM education using South African universities as the case study.

Design/methodology/approach

Quantitative research approach was used in this study, that is, a survey (questionnaire) was designed specifically to investigate the impacts of the existing AM technology/education and the facilities at the selected South African universities. The survey was distributed to several students (undergraduate and postgraduate) and the academic staffs within the selected universities. The questionnaire contained structured questions based on five factors/variables and followed by two open-ended questions. The data were collected and analyzed using statistical tools and were interpreted accordingly (i.e. both the closed and open-ended questions). The hypotheses were stated, tested and accepted. In conclusion, the framework for AM education at the universities was developed.

Findings

Based on different literature reviewed on “framework for AM technology and education”, there is no specific framework that centers on AM education and this makes it difficult to find an existing framework for AM education to serve as a landscape to determine the new framework for AM education at the universities. Therefore, the results from this study made a significant contribution to the body of knowledge in AM, most especially in the area of education. The significant positive responses from the respondents have shown that the existing AM in-house facilities at the selected South African universities is promoting AM education and research activities. This study also shows that a number of students at the South African universities have access to AM/3D printing lab for design and research purposes. Furthermore, the findings show that the inclusion of AM education in the curriculum of both the science and engineering education is South Africa will bring very positive results. The introduction of a postgraduate degree in AM such as MSc or MEng in AM will greatly benefit the South African universities and different industries because it will increase the number of AM experts and professionals. Through literature review, this study was able to identify five factors (which includes sub-factors) that are suitable for the development of a framework for AM education, and this framework is expected to serve as base-line or building block for other universities globally to build/develop their AM journey.

Research limitations/implications

The survey was distributed to 200 participants and 130 completed questionnaires were returned. The target audience for the survey was mainly university students (both undergraduate and postgraduate) and the academics who have access to AM machines or have used the AM/3D printing lab/facilities on their campuses for both academic and research purposes. Therefore, one of the limitations of the survey is the limited sample size; however, the sample size for this survey is considered suitable for this type of research and would allow generalization of the findings. Nevertheless, future research on this study should use larger sample size for purpose of results generalization. In addition, this study is limited to quantitative research methodology; future study should include qualitative research method. Irrespective of any existing or developed framework, there is always a need to further improve the existing framework, and therefore, the proposed framework for AM education in this study contained only five factors/variables and future should include some other factors (AM commercialization, AM continuous Improvement, etc.) to further enhance the framework.

Practical implications

This study provides the readers and researchers within the STEM education, industry or engineering education/educators to see the importance of the inclusion of AM in the university curriculum for both undergraduate and postgraduate degrees. More so, this study serves as a roadmap for AM initiative at the universities and provides necessary factors to be considered when the universities are considering or embarking on AM education/research journey at their universities. It also serves as a guideline or platform for various investors or individual organization to see the need to invest in AM education.

Originality/value

The contribution of this study towards the existing body of knowledge in AM technology, specifically “AM education research” is in the form of proposed framework for AM education at the universities which would allow the government sectors/industry/department/bodies and key players in AM in South Africa and globally to see the need to invest significantly towards the advancement of AM technology, education and research activities at various universities.

Content available
Article
Publication date: 6 February 2017

J. Roland Ortt

Abstract

Details

Journal of Manufacturing Technology Management, vol. 28 no. 1
Type: Research Article
ISSN: 1741-038X

Open Access
Article
Publication date: 18 May 2021

Praveen Kulkarni, Arun Kumar, Ganesh Chate and Padma Dandannavar

This study aims to examine factors that determine the adoption of additive manufacturing by small- and medium-sized industries. It provides insights with regard to benefits…

2592

Abstract

Purpose

This study aims to examine factors that determine the adoption of additive manufacturing by small- and medium-sized industries. It provides insights with regard to benefits, challenges and business factors that influence small- and medium-sized industries when adopting this technology. The study also aims to expand the domain of additive manufacturing by including a broader range of challenges and benefits of additive manufacturing in literature.

Design/methodology/approach

Using data collected from 175 small- and medium-sized industries, the study has examined through Mann–Whitney test to understand the difference between owners and design engineers on additive manufacturing technology adoption in small- and medium-sized companies.

Findings

This study suggests contribution to academic discussion by providing associated factors that have significant impact on the adoption of additive manufacturing technology. Related advantages of additive manufacturing are reduction in inventory cost, lowering the wastage in production and customization of products. The study also indicates that factors such as cost of machinery, higher level of cost in integrating metal components have a negative impact on the adoption of this technology in small- and medium-sized industries.

Research limitations/implications

Because of the chosen research approach, the research results may lack generalizability. Therefore, researchers are encouraged to test the proposed propositions further in the field of challenges and growth in other areas of application of additive manufacturing, for instance, medical sciences, fabric and aerospace.

Practical implications

The study provides important implications that are of interest for both research and practitioners, related to technology management in small- and medium-sized industries, e.g. foundry and machining industries.

Social implications

This work/study fulfills an identified need of the small- and medium-sized companies in adopting new technologies and contribute to their growth by understanding the need to accept and implement technology.

Originality/value

This paper fulfills an identified need to study how small- and medium-scale companies accept new technologies and factors associated with implementation in the manufacturing process of the organization.

Details

Innovation & Management Review, vol. 18 no. 4
Type: Research Article
ISSN: 2515-8961

Keywords

Article
Publication date: 23 October 2018

Antreas Kantaros and Olaf Diegel

This paper aims to discuss additive manufacturing (AM) in the context of applications for musical instruments. It examines the main AM technologies used in musical instruments…

3710

Abstract

Purpose

This paper aims to discuss additive manufacturing (AM) in the context of applications for musical instruments. It examines the main AM technologies used in musical instruments, goes through a history of musical applications of AM and raises the questions about the application of AM to create completely new wind instruments that would be impossible to produce with conventional manufacturing.

Design/methodology/approach

A literature research is presented which covers a historical application of AM to musical instruments and hypothesizes on some potential new applications.

Findings

AM has found extensive application to create conventional musical instruments with unique aesthetics designs. It’s true potential to create entirely new sounds, however, remains largely untapped.

Research limitations/implications

More research is needed to truly assess the potential of additive manufacturing to create entirely new sounds for musical instrument.

Practical implications

The application of AM in music could herald an entirely new class of musical instruments with unique sounds.

Originality/value

This study highlights musical instruments as an unusual application of AM. It highlights the potential of AM to create entirely new sounds, which could create a whole new class of musical instruments.

Article
Publication date: 19 July 2023

João Maranha, Paulo Jorge Nascimento, Tomaz Alexandre Calcerano, Cristóvão Silva, Stefanie Mueller and Samuel Moniz

This study provides an up-to-date review of additive manufacturing (AM) technologies and guidance for selecting the most appropriate ones for specific applications, taking into…

Abstract

Purpose

This study provides an up-to-date review of additive manufacturing (AM) technologies and guidance for selecting the most appropriate ones for specific applications, taking into account the main features, strengths, and limitations of the existing options.

Design/methodology/approach

A literature review on AM technologies was conducted to assess the current state-of-the-art. This was followed by a closer examination of different AM machines to gain a deeper insight into their main features and operational characteristics. The conclusions and data gathered were used to formulate a classification and decision-support framework.

Findings

The findings indicate the building blocks of the selection process for AM technologies. Furthermore, this work shows the suitability of the existing AM technologies for specific cases and points to opportunities for technological and decision-support improvements. Lastly, more standardization in AM would be beneficial for future research.

Practical implications

The proposed framework offers valuable support for decision-makers to select the most suitable AM technologies, as demonstrated through practical examples of its utilization. In addition, it can help researchers identify the limitations of AM by pinpointing applications where existing technologies fail to meet the requirements.

Originality/value

The study offers a novel classification and decision-support framework for selecting AM technologies, incorporating machine characteristics, process features, physical properties of printed parts, and costs as key features to evaluate the potential of AM. Additionally, it provides a deeper understanding of these features as well as the potential opportunities for AM and its impact on various industries.

Details

Journal of Manufacturing Technology Management, vol. 34 no. 7
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 27 September 2021

Michele Ciotti, Giampaolo Campana and Mattia Mele

This paper aims to present a survey concerning the accuracy of thermoplastic polymeric parts fabricated by additive manufacturing (AM). Based on the scientific literature, the aim…

Abstract

Purpose

This paper aims to present a survey concerning the accuracy of thermoplastic polymeric parts fabricated by additive manufacturing (AM). Based on the scientific literature, the aim is to provide an updated map of trends and gaps in this relevant research field. Several technologies and investigation methods are examined, thus giving an overview and analysis of the growing body of research.

Design/methodology/approach

Permutations of keywords, which concern materials, technologies and the accuracy of thermoplastic polymeric parts fabricated by AM, are used for a systematic search in peer-review databases. The selected articles are screened and ranked to identify those that are more relevant. A bibliometric analysis is performed based on investigated materials and applied technologies of published papers. Finally, each paper is categorised and discussed by considering the implemented research methods.

Findings

The interest in the accuracy of additively manufactured thermoplastics is increasing. The principal sources of inaccuracies are those shrinkages occurring during part solidification. The analysis of the research methods shows a predominance of empirical approaches. Due to the experimental context, those achievements have consequently limited applicability. Analytical and numerical models, which generally require huge computational costs when applied to complex products, are also numerous and are investigated in detail. Several articles deal with artificial intelligence tools and are gaining more and more attention.

Originality/value

The cross-technology survey on the accuracy issue highlights the common critical aspects of thermoplastics transformed by AM. An updated map of the recent research literature is achieved. The analysis shows the advantages and limitations of different research methods in this field, providing an overview of research trends and gaps.

Details

Rapid Prototyping Journal, vol. 28 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 August 2018

Daniel R. Eyers, Andrew T. Potter, Jonathan Gosling and Mohamed M. Naim

Flexibility is a fundamental performance objective for manufacturing operations, allowing them to respond to changing requirements in uncertain and competitive global markets…

2060

Abstract

Purpose

Flexibility is a fundamental performance objective for manufacturing operations, allowing them to respond to changing requirements in uncertain and competitive global markets. Additive manufacturing machines are often described as “flexible,” but there is no detailed understanding of such flexibility in an operations management context. The purpose of this paper is to examine flexibility from a manufacturing systems perspective, demonstrating the different competencies that can be achieved and the factors that can inhibit these in commercial practice.

Design/methodology/approach

This study extends existing flexibility theory in the context of an industrial additive manufacturing system through an investigation of 12 case studies, covering a range of sectors, product volumes, and technologies. Drawing upon multiple sources, this research takes a manufacturing systems perspective that recognizes the multitude of different resources that, together with individual industrial additive manufacturing machines, contribute to the satisfaction of demand.

Findings

The results show that the manufacturing system can achieve seven distinct internal flexibility competencies. This ability was shown to enable six out of seven external flexibility capabilities identified in the literature. Through a categorical assessment the extent to which each competency can be achieved is identified, supported by a detailed explanation of the enablers and inhibitors of flexibility for industrial additive manufacturing systems.

Originality/value

Additive manufacturing is widely expected to make an important contribution to future manufacturing, yet relevant management research is scant and the flexibility term is often ambiguously used. This research contributes the first detailed examination of flexibility for industrial additive manufacturing systems.

Details

International Journal of Operations & Production Management, vol. 38 no. 12
Type: Research Article
ISSN: 0144-3577

Keywords

Article
Publication date: 6 February 2017

Yuran Jin, Shoufeng Ji, Xin Li and Jiangnan Yu

Additive manufacturing has achieved rapid development in recent years. The purpose of this paper is to visualize the intellectual landscapes of additive manufacturing and identify…

1492

Abstract

Purpose

Additive manufacturing has achieved rapid development in recent years. The purpose of this paper is to visualize the intellectual landscapes of additive manufacturing and identify the hotspots and emerging trends of additive manufacturing, which can provide references for scholars, enterprises and governments to promote the development of theory and practice in the additive manufacturing field.

Design/methodology/approach

Science mapping is a fast-growing interdisciplinary field originated in information science and technology. Based on this methodology, guided by a computational approach, the paper visualizes the co-occurring keywords network and co-citation references network by CiteSpaceIII software to explore the hotspots and emerging trends of additive manufacturing by the following five indicators: highly cited keywords, burst keywords, clusters, landmark references and burst references.

Findings

Additive manufacturing,” “3D printing,” “3D powder printing,” “consolidation phenomena,” “microstructure,” “rapid prototyping,” etc., are the main hotspots of additive manufacturing. The trends of additive manufacturing generally consist of three stages: the fundamental concepts stage from 1995 to 2000 (“rapid prototyping,” “additive manufacturing,” etc.), the approaches and techniques applications stage from 2001 to 2010 (“stereolithography,” “scaffold,” etc.), and the emerging trends stage from 2011 to the present (“stem cell”, “selective laser,” “ti-6al-4v,” etc.). The research is most abundant in 2010 and 2012. The medical field is an important hotspot of additive manufacturing. Additive manufacturing has been researched in interdiscipline.

Originality/value

The paper maps the perspective of additive manufacturing and explore the hotspots and emerging trends of additive manufacturing.

Details

Journal of Manufacturing Technology Management, vol. 28 no. 1
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 8 March 2021

Damien Chaney, Julien Gardan and Julien De Freyman

The purpose of this paper is to present the relationship implications of additive manufacturing (AM), which has the ability to produce layer-by-layer three-dimensional complex…

1334

Abstract

Purpose

The purpose of this paper is to present the relationship implications of additive manufacturing (AM), which has the ability to produce layer-by-layer three-dimensional complex products by adding material in comparison to traditional manufacturing processes which remove material – for industrial marketing.

Design/methodology/approach

After presenting the literature on customer relationships and digital technologies in business-to-business, the study uses a “zoom-out” and “zoom-in” perspective to review the extant literature on AM and then makes study propositions for industrial marketing.

Findings

Through the adoption of AM technologies, the study suggests that firms can improve their level of servitization through customized products, offer more sustainable value propositions and empower their customers through the sale of digital files, which can be considered as levers to strengthen relationships with customers.

Research limitations/implications

This paper makes several propositions regarding the relationship implications of AM for industrial marketing that further research should test.

Practical implications

This paper highlights the relational benefits that adopting AM may represent for companies.

Originality/value

While AM which is considered as an industrial revolution has generated a wide body of research in engineering and operations and technology management sciences, its impact on industrial marketing remains understudied.

Details

Journal of Business & Industrial Marketing, vol. 37 no. 1
Type: Research Article
ISSN: 0885-8624

Keywords

1 – 10 of over 12000