Search results

1 – 10 of over 3000
Article
Publication date: 8 January 2020

Micheal Omotayo Alabi, Deon Johan de Beer, Harry Wichers and Cornelius P. Kloppers

In this era of Fourth Industrial Revolution, also known as Industry 4.0, additive manufacturing (AM) has been recognized as one of the nine technologies of Industry 4.0 that will…

Abstract

Purpose

In this era of Fourth Industrial Revolution, also known as Industry 4.0, additive manufacturing (AM) has been recognized as one of the nine technologies of Industry 4.0 that will revolutionize different sectors (such as manufacturing and industrial production). Therefore, this study aims to focus on “Additive Manufacturing Education” and the primary aim of this study is to investigate the impacts of AM technology at selected South African universities and develop a proposed framework for effective AM education using South African universities as the case study.

Design/methodology/approach

Quantitative research approach was used in this study, that is, a survey (questionnaire) was designed specifically to investigate the impacts of the existing AM technology/education and the facilities at the selected South African universities. The survey was distributed to several students (undergraduate and postgraduate) and the academic staffs within the selected universities. The questionnaire contained structured questions based on five factors/variables and followed by two open-ended questions. The data were collected and analyzed using statistical tools and were interpreted accordingly (i.e. both the closed and open-ended questions). The hypotheses were stated, tested and accepted. In conclusion, the framework for AM education at the universities was developed.

Findings

Based on different literature reviewed on “framework for AM technology and education”, there is no specific framework that centers on AM education and this makes it difficult to find an existing framework for AM education to serve as a landscape to determine the new framework for AM education at the universities. Therefore, the results from this study made a significant contribution to the body of knowledge in AM, most especially in the area of education. The significant positive responses from the respondents have shown that the existing AM in-house facilities at the selected South African universities is promoting AM education and research activities. This study also shows that a number of students at the South African universities have access to AM/3D printing lab for design and research purposes. Furthermore, the findings show that the inclusion of AM education in the curriculum of both the science and engineering education is South Africa will bring very positive results. The introduction of a postgraduate degree in AM such as MSc or MEng in AM will greatly benefit the South African universities and different industries because it will increase the number of AM experts and professionals. Through literature review, this study was able to identify five factors (which includes sub-factors) that are suitable for the development of a framework for AM education, and this framework is expected to serve as base-line or building block for other universities globally to build/develop their AM journey.

Research limitations/implications

The survey was distributed to 200 participants and 130 completed questionnaires were returned. The target audience for the survey was mainly university students (both undergraduate and postgraduate) and the academics who have access to AM machines or have used the AM/3D printing lab/facilities on their campuses for both academic and research purposes. Therefore, one of the limitations of the survey is the limited sample size; however, the sample size for this survey is considered suitable for this type of research and would allow generalization of the findings. Nevertheless, future research on this study should use larger sample size for purpose of results generalization. In addition, this study is limited to quantitative research methodology; future study should include qualitative research method. Irrespective of any existing or developed framework, there is always a need to further improve the existing framework, and therefore, the proposed framework for AM education in this study contained only five factors/variables and future should include some other factors (AM commercialization, AM continuous Improvement, etc.) to further enhance the framework.

Practical implications

This study provides the readers and researchers within the STEM education, industry or engineering education/educators to see the importance of the inclusion of AM in the university curriculum for both undergraduate and postgraduate degrees. More so, this study serves as a roadmap for AM initiative at the universities and provides necessary factors to be considered when the universities are considering or embarking on AM education/research journey at their universities. It also serves as a guideline or platform for various investors or individual organization to see the need to invest in AM education.

Originality/value

The contribution of this study towards the existing body of knowledge in AM technology, specifically “AM education research” is in the form of proposed framework for AM education at the universities which would allow the government sectors/industry/department/bodies and key players in AM in South Africa and globally to see the need to invest significantly towards the advancement of AM technology, education and research activities at various universities.

Article
Publication date: 19 June 2019

Micheal Omotayo Alabi, Deon De Beer and Harry Wichers

This paper aims to provide a comprehensive overview of the recent applications of additive manufacturing (AM) research and activities within selected universities in the Republic…

Abstract

Purpose

This paper aims to provide a comprehensive overview of the recent applications of additive manufacturing (AM) research and activities within selected universities in the Republic of South Africa (SA).

Design/methodology/approach

The paper is a general review of AM education, research and development effort within selected South African universities. The paper begins by looking at several support programmes and investments in AM technologies by the South African Department of Science and Technology (DST). The paper presents South Africa’s AM journey to date and recent global development in AM education. Next, the paper reviews the recent research activities on AM at four selected South African universities, South Africa AM roadmap and South African AM strategy. The future prospects of AM education and research are then evaluated through a SWOT analysis. Finally, the paper looks at the sustainability of AM from an education perspective.

Findings

The main lessons that have been learnt from South African AM research activities within selected universities are as follows: AM research activities at South African universities serve as a platform to promote AM education, and several support programmes and investments from South Africa’s DST have greatly enhanced the growth of AM across different sectors, such as medical, manufacturing, industrial design, tooling, jewellery and education. The government support has also assisted in the actualisation of the “Aeroswift” project, the world’s largest and fastest state-of-the-art AM machine that can 3D print metal parts. The AM research activities within South Africa’s universities have shown that it is not too late for developing countries to start and embrace AM technologies both in academia and industry. Based on a SWOT analysis, the future prospects of AM technology in SA are bright.

Practical implications

Researchers/readers from different backgrounds such as academic, industrial and governmental will be able to learn important lessons from SA’s AM journey and the success of SA’s AM researchers/practitioners. This paper will allow the major investors in AM technologies and business to see great opportunities to invest in AM education and research at all educational levels (i.e. high schools, colleges and universities) in South Africa.

Originality/value

The authors believe that the progress of AM education and research activities within SA’s universities show good practice and achievement over the years in both the applications of AM and the South African AM strategy introduced to promote AM research and the educational aspect of the technologies.

Details

Rapid Prototyping Journal, vol. 25 no. 4
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 21 June 2019

Christina Öberg and Tawfiq Shams

With the overarching idea of disruptive technology and its effects on business, this paper focuses on how companies strategically consider meeting the challenge of a disruptive…

Abstract

Purpose

With the overarching idea of disruptive technology and its effects on business, this paper focuses on how companies strategically consider meeting the challenge of a disruptive technology such as additive manufacturing. The purpose of this paper is to describe and discuss changes in positions and roles related to the implementation of a disruptive technology.

Design/methodology/approach

Additive manufacturing could be expected to have different consequences for parties based on their current supply chain positions. The paper therefore investigates companies’ strategies related to various supply chain positions and does so by departing from a position and role point of view. Three business cases related to metal 3D printing - illustrating sub-suppliers, manufacturers and logistics firms - describe as many strategies. Data for the cases were collected through meetings, interviews, seminars and secondary data focusing on both current business activities related to additive manufacturing and scenarios for the future.

Findings

The companies attempted to defend their current positions, leading to new roles for them. This disconnects the change of roles from that of positions. The changed roles indicate that all parties, regardless of supply chain positions, would move into competing producing roles, thereby indicating how a disruptive technology may disrupt network structures based on companies’ attempts to defend their positions.

Originality/value

The paper contributes to previous research by reporting a disconnect between positions and roles among firms when disruption takes place. The paper further denotes how the investigated firms largely disregarded network consequences at the disruptive stage, caused by the introduction of additive manufacturing. The paper also contributes to research on additive manufacturing by including a business dimension and linking this to positions and roles.

Details

Journal of Business & Industrial Marketing, vol. 34 no. 5
Type: Research Article
ISSN: 0885-8624

Keywords

Article
Publication date: 17 August 2015

Andrea Gatto, Elena Bassoli, Lucia Denti, Luca Iuliano and Paolo Minetola

The purpose of this paper is to report an interdisciplinary, cooperative-learning project in a second-year course within the “Enzo Ferrari” Master of Science Degree in Mechanical…

3589

Abstract

Purpose

The purpose of this paper is to report an interdisciplinary, cooperative-learning project in a second-year course within the “Enzo Ferrari” Master of Science Degree in Mechanical Engineering. The work aims to raise awareness of the educational impact of additive manufacturing and reverse engineering.

Design/methodology/approach

Students are asked to develop, concurrently, the design and the manufacturing solution for an eye-tracker head mount. A digital head model is reverse engineered from an anatomical mannequin and used as an ergonomic mock-up. The project includes prototype testing and cost analysis. The device is produced using additive manufacturing techniques for hands-on evaluation by the students.

Findings

Results of the presented case study substantiate the authors’ belief in the tremendous potential of interdisciplinary project-based learning, relying on innovative technologies to encourage collaboration, motivation and dynamism.

Originality/value

The paper confirms a spreading conviction that the soon-to-be engineers will need new practice-oriented capabilities to cope with new competitive scenarios. Engineering education must adapt to the social, rather than industrial, revolution that is being brought about by additive fabrication.

Details

Rapid Prototyping Journal, vol. 21 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 June 2021

Luis Lisandro Lopez Taborda, Heriberto Maury and Jovanny Pacheco

There are many investigations in design methodologies, but there are also divergences and convergences as there are so many points of view. This study aims to evaluate to…

1142

Abstract

Purpose

There are many investigations in design methodologies, but there are also divergences and convergences as there are so many points of view. This study aims to evaluate to corroborate and deepen other researchers’ findings, dissipate divergences and provide directing to future work on the subject from a methodological and convergent perspective.

Design/methodology/approach

This study analyzes the previous reviews (about 15 reviews) and based on the consensus and the classifications provided by these authors, a significant sample of research is analyzed in the design for additive manufacturing (DFAM) theme (approximately 80 articles until June of 2017 and approximately 280–300 articles until February of 2019) through descriptive statistics, to corroborate and deepen the findings of other researchers.

Findings

Throughout this work, this paper found statistics indicating that the main areas studied are: multiple objective optimizations, execution of the design, general DFAM and DFAM for functional performance. Among the main conclusions: there is a lack of innovation in the products developed with the methodologies, there is a lack of exhaustivity in the methodologies, there are few efforts to include environmental aspects in the methodologies, many of the methods include economic and cost evaluation, but are not very explicit and broad (sustainability evaluation), it is necessary to consider a greater variety of functions, among other conclusions

Originality/value

The novelty in this study is the methodology. It is very objective, comprehensive and quantitative. The starting point is not the case studies nor the qualitative criteria, but the figures and quantities of methodologies. The main contribution of this review article is to guide future work on the subject from a methodological and convergent perspective and this article provides a broad database with articles containing information on many issues to make decisions: design methodology; optimization; processes, selection of parts and materials; cost and product management; mechanical, electrical and thermal properties; health and environmental impact, etc.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 15 August 2016

Lindsey Bass, Nicholas Alexander Meisel and Christopher B. Williams

Understanding how material jetting process parameters affect material properties can inform design and print orientation when manufacturing end-use components. This study aims to…

2118

Abstract

Purpose

Understanding how material jetting process parameters affect material properties can inform design and print orientation when manufacturing end-use components. This study aims to explore the robustness of material properties in material jetted components to variations in processing environment and build orientation.

Design/methodology/approach

The authors characterized the properties of six different material gradients produced from preset “digital material” mixes of polypropylene-like (VeroWhitePlus) and elastomer-like (TangoBlackPlus) materials. Tensile stress, modulus of elasticity and elongation at break were analyzed for each material printed at three different build orientations. In a separate ten-week study, the authors investigated the effects of aging in different lighting conditions on material properties.

Findings

Specimens fabricated with their longest dimension along the direction of the print head travel (X-axis) tended to have the largest tensile strength, but trends in elastic modulus and elongation at break varied between the rigid and flexible photopolymers. The aging study showed that the ultimate tensile stress of VeroWhitePlus parts increased and the elongation decreased over time. Material properties were not significantly altered by lighting conditions.

Research limitations/implications

Many tensile specimens failed at the neck region, especially for the more elastomeric parts. It is hypothesized that this is due to the material jetting process approximating curves with a pixelated droplet arrangement, instead of curved contour as seen in other additive manufacturing processes. A new tensile specimen design that performs more consistently with elastomer-like materials should be considered. The aging component of this study is focused solely on polypropylene-like (VeroWhitePlus) material; additional research into the effects of aging on multiple composite materials is needed.

Originality/value

The study provides the first known description of orientation effects on the mechanical behavior of photopolymers containing varied concentrations of elastomeric (TangoBlackPlus) material. The aging study presents the first findings on how time affects parts made via material jetting.

Details

Rapid Prototyping Journal, vol. 22 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 14 January 2022

Martins Ugonna Obi, Patrick Pradel, Matt Sinclair and Richard Bibb

The purpose of this paper is to understand how Design for Additive manufacturing Knowledge has been developing and its significance to both academia and industry.

Abstract

Purpose

The purpose of this paper is to understand how Design for Additive manufacturing Knowledge has been developing and its significance to both academia and industry.

Design/methodology/approach

In this paper, the authors use a bibliometric approach to analyse publications from January 2010 to December 2020 to explore the subject areas, publication outlets, most active authors, geographical distribution of scholarly outputs, collaboration and co-citations at both institutional and geographical levels and outcomes from keywords analysis.

Findings

The findings reveal that most knowledge has been developed in DfAM methods, rules and guidelines. This may suggest that designers are trying to learn new ways of harnessing the freedom offered by AM. Furthermore, more knowledge is needed to understand how to tackle the inherent limitations of AM processes. Moreover, DfAM knowledge has thus far been developed mostly by authors in a small number of institutional and geographical clusters, potentially limiting diverse perspectives and synergies from international collaboration which are essential for global knowledge development, for improvement of the quality of DfAM research and for its wider dissemination.

Originality/value

A concise structure of DfAM knowledge areas upon which the bibliometric analysis was conducted has been developed. Furthermore, areas where research is concentrated and those that require further knowledge development are revealed.

Details

Rapid Prototyping Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 October 2018

Monica Carfagni, Lorenzo Fiorineschi, Rocco Furferi, Lapo Governi and Federico Rotini

This paper aims to argue about the involvement of additive technologies (ATs) in the prototyping issues of designing. More precisely, it reviews the literature contributions…

Abstract

Purpose

This paper aims to argue about the involvement of additive technologies (ATs) in the prototyping issues of designing. More precisely, it reviews the literature contributions focused on the different perspectives of prototyping activities for design purposes, searching for both available knowledge and research needs concerning the correct exploitation of ATs.

Design/methodology/approach

A two-step literature review has been performed. In the first step, general information has been retrieved about prototyping issues related to design. In the second step, the literature searches were focused on retrieving more detailed information about ATs, concerning each of the main issues identified in the previous step. Extracted information has been analyzed and discussed for understanding the actual coverage of the arguments and for identifying possible research needs.

Findings

Four generally valid prototyping issues have been identified in the first step of the literature review. For each of them, available information and current lacks have been identified and discussed about the involvement of AT, allowing to extract six different research hints for future works.

Originality/value

This is the first literature review concerning AT-focused contributions that cover the complex and inter-disciplinary issues characterizing prototyping activities in design contexts.

Details

Rapid Prototyping Journal, vol. 24 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 August 2015

Brett P. Conner, Guha P. Manogharan and Kerry L. Meyers

The purpose of this paper is to examine the implementation of entry-level printers in small businesses and education to identify corresponding benefits, implications and…

1563

Abstract

Purpose

The purpose of this paper is to examine the implementation of entry-level printers in small businesses and education to identify corresponding benefits, implications and challenges.

Design/methodology/approach

Data were collected from four small businesses in northeast Ohio through survey- and interview-based feedback to develop an understanding of their use of entry-level 3D printing. Three businesses are representative of typical manufacturing-related small companies (final part fabrication-, tooling- and system-level suppliers) and the fourth company provides manufacturing-related educational tools. Corresponding learning from implementation and outcomes are assessed.

Findings

Adoption of 3D printing technology was enabled through hands-on experience with entry-level 3D printers, even with their shortcomings. Entry-level 3D printing provided a workforce development opportunity to prepare small businesses to eventually work with production grade systems.

Originality/value

This paper details industry-based findings on venturing into commercializing 3D printing through first-hand experiences enabled by entry-level 3D printing.

Details

Rapid Prototyping Journal, vol. 21 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 August 2015

Nicholas A. Meisel and Christopher B. Williams

The purpose of this study/paper is to present the design and implementation of a novel vending machine concept based on desktop-scale extrusion additive manufacturing (AM). Due to…

1294

Abstract

Purpose

The purpose of this study/paper is to present the design and implementation of a novel vending machine concept based on desktop-scale extrusion additive manufacturing (AM). Due to cost, access to AM technologies at academic institutions tends to be limited to upper-level courses to support project-based coursework. However, with the decreasing cost of desktop-scale AM technology, there is potential to improve student access to such technologies and provide more opportunities for AM education.

Design/methodology/approach

The authors present the design and implementation of an AM “vending machine” that is powered by desktop-scale extrusion-based AM systems. This system intends to provide students broad, unrestricted access to entry-level AM tools and promote informal learning opportunities.

Findings

Student users of the AM vending machine are found to be primarily engineering majors at various levels in their studies. Manufactured parts are evenly split between functional and decorative parts, though 75 per cent of students are creating their own designs rather than simply printing found design files.

Research limitations/implications

Future work will focus on improving the system’s ease-of-maintenance, lowering the barrier to entry with a simpler user interface and establishing a method for better recording part and user information.

Practical implications

The interface of the AM vending machine lowers the barrier of entry into engaging with AM and places this emerging technology in a familiar and “safe” context. It provides students at various levels and disciplines the opportunity to fabricate parts for classroom and personal projects.

Social implications

A “vending machine” system may have far-reaching implications for public access and use of AM. Such broad access has the potential to further educate and impassion the public about the potential of AM.

Originality/value

This work represents the creation and assessment of the world’s first AM vending machine.

Details

Rapid Prototyping Journal, vol. 21 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 3000