Search results

1 – 10 of 962
Article
Publication date: 25 February 2022

Yazhou Wang, Ningning Xie, Likun Yin, Tong Zhang, Xuelin Zhang, Shengwei Mei, Xiaodai Xue and Kumar Tamma

The purpose of this paper is to describe a novel universal error estimator and the adaptive time-stepping process in the generalized single-step single-solve (GS4-1) computational…

Abstract

Purpose

The purpose of this paper is to describe a novel universal error estimator and the adaptive time-stepping process in the generalized single-step single-solve (GS4-1) computational framework, applied for the fluid dynamics with illustrations to incompressible Navier–Stokes equations.

Design/methodology/approach

The proposed error estimator is universal and versatile that it works for the entire subsets of the GS4-1 framework, encompassing the nondissipative Crank–Nicolson method, the most dissipative backward differential formula and anything in between. It is new and novel that the cumbersome design work of error estimation for specific time integration algorithms can be avoided. Regarding the numerical implementation, the local error estimation has a compact representation that it is determined by the time derivative variables at four successive time levels and only involves vector operations, which is simple for numerical implementation. Additionally, the adaptive time-stepping is further illustrated by the proposed error estimator and is used to solve the benchmark problems of lid-driven cavity and flow past a cylinder.

Findings

The proposed computational procedure is capable of eliminating the nonphysical oscillations in GS4-1(1,1)/Crank–Nicolson method; being CPU-efficient in both dissipative and nondissipative schemes with better solution accuracy; and detecting the complex physics and hence selecting a suitable time step according to the user-defined error threshold.

Originality/value

To the best of the authors’ knowledge, for the first time, this study applies the general purpose GS4-1 family of time integration algorithms for transient simulations of incompressible Navier–Stokes equations in fluid dynamics with constant and adaptive time steps via a novel and universal error estimator. The proposed computational framework is simple for numerical implementation and the time step selection based on the proposed error estimation is efficient, benefiting to the computational expense for transient simulations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 September 2023

Yazhou Wang, Dehong Luo, Xuelin Zhang, Zhitao Wang, Hui Chen, Xiaobo Zhang, Ningning Xie, Shengwei Mei, Xiaodai Xue, Tong Zhang and Kumar K. Tamma

The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF…

Abstract

Purpose

The purpose of this paper is to design a simple and accurate a-posteriori Lagrangian-based error estimator is developed for the class of backward differentiation formula (BDF) algorithms with variable time step size, and the adaptive time-stepping in BDF algorithms is demonstrated for efficient time-dependent simulations in fluid flow and heat transfer.

Design/methodology/approach

The Lagrange interpolation polynomial is used to predict the time derivative, and then the accurate primary result is obtained by the Gauss integral, which is applied to evaluate the local error. Not only the generalized formula of the proposed error estimator is presented but also the specific expression for the widely applied BDF1/2/3 is illustrated. Two essential executable MATLAB functions to implement the proposed error estimator are appended for practical applications. Then, the adaptive time-stepping is demonstrated based on the newly proposed error estimator for BDF algorithms.

Findings

The validation tests show that the newly proposed error estimator is accurate such that the effectivity index is always close to unity for both linear and nonlinear problems, and it avoids under/overestimation of the exact local error. The applications for fluid dynamics and coupled fluid flow and heat transfer problems depict the advantage of adaptive time-stepping based on the proposed error estimator for time-dependent simulations.

Originality/value

In contrast to existing error estimators for BDF algorithms, the present work is more accurate for the local error estimation, and it can be readily extended to practical applications in engineering with a few changes to existing codes, contributing to efficient time-dependent simulations in fluid flow and heat transfer.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 12
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 20 June 2018

Sivaguru S. Ravindran and Alok K. Majumdar

This paper aims to propose an adaptive unstructured finite volume procedure for efficient prediction of propellant feedline dynamics in fluid network.

Abstract

Purpose

This paper aims to propose an adaptive unstructured finite volume procedure for efficient prediction of propellant feedline dynamics in fluid network.

Design/methodology/approach

The adaptive strategy is based on feedback control of errors defined by changes in key variables in two subsequent time steps.

Findings

As an evaluation of the proposed approach, two feedline dynamics problems are formulated and solved. First problem involves prediction of pressure surges in a pipeline that has entrapped air and the second is a conjugate heat transfer problem involving prediction of chill down of cryogenic transfer line. Numerical predictions with the adaptive strategy are compared with available experimental data and are found to be in good agreement. The adaptive strategy is found to be efficient and robust for predicting feedline dynamics in flow network at reduced CPU time.

Originality/value

This study uses an adaptive reduced-order network modeling approach for fluid network.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 January 2008

Galina Benderskaya, Herbert De Gersem, Wolfgang Ackermann and Thomas Weiland

To provide a reliable numerical technique for the time integration of the electromagnetic models with sinusoidal excitation.

Abstract

Purpose

To provide a reliable numerical technique for the time integration of the electromagnetic models with sinusoidal excitation.

Design/methodology/approach

The numerical integration of an electrotechnical problem is commonly carried out using adaptive time stepping. For one particular selected time step, Runge‐Kutta (RK) adaptive integration methods deliver two approximations to the solution with different order of approximation. The difference between both is used to estimate the local error.

Findings

Standard error‐controlled RK time integration fails for electromagnetic problems with sinusoidal excitation when the adaptive time step selection relies upon the comparison of a main solution and an embedded solution where the difference of orders is one. This problem is overcome when the embedded solution differs by two orders of approximations. Such embedded solution is efficiently constructed by putting appropriate order conditions on the coefficients of the Butcher table.

Originality/value

Using the technique proposed in the paper, electromagnetic problems with sinusoidal dynamics can also be effectively tackled.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 27 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 August 2001

Jaroslav Mackerle

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the…

1667

Abstract

Gives a bibliographical review of the error estimates and adaptive finite element methods from the theoretical as well as the application point of view. The bibliography at the end contains 2,177 references to papers, conference proceedings and theses/dissertations dealing with the subjects that were published in 1990‐2000.

Details

Engineering Computations, vol. 18 no. 5/6
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 December 2004

Galina Benderskaya, Herbert De Gersem, Thomas Weiland and Markus Clemens

The coupling between a 3D modified magnetic vector potential formulation discretized by the finite integration technique and an electrical circuit that includes solid and stranded…

Abstract

The coupling between a 3D modified magnetic vector potential formulation discretized by the finite integration technique and an electrical circuit that includes solid and stranded conductors is presented. This paper describes classical time integration methods and the implicit Runge‐Kutta methods, the latter being an appropriate alternative to the first ones to solve effectively index 1 differential‐algebraic equations arising from combined simulation of electromagnetic fields and electrical circuits.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 23 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 15 August 2019

Etienne Muller, Dominique Pelletier and André Garon

This paper aims to focus on characterization of interactions between hp-adaptive time-integrators based on backward differentiation formulas (BDF) and adaptive meshing based on…

Abstract

Purpose

This paper aims to focus on characterization of interactions between hp-adaptive time-integrators based on backward differentiation formulas (BDF) and adaptive meshing based on Zhu and Zienkiewicz error estimation approach. If mesh adaptation only occurs at user-supplied times and results in a completely new mesh, it is necessary to stop the time-integration at these same times. In these conditions, one challenge is to find an efficient and reliable way to restart the time-integration. The authors investigate what impact grid-to-grid interpolation errors have on the relaunch of the computation.

Design/methodology/approach

Two restart strategies of the time-integrator were used: one based on resetting the time-step size h and time-integrator order p to default values (used in the initial startup phase), and another designed to restart with the time-step size h and order p used by the solver prior to remeshing. The authors also investigate the benefits of quadratically interpolate the solution on the new mesh. Both restart strategies were used to solve laminar incompressible Navier–Stokes and the Unsteady Reynolds Averaged Naviers-Stokes (URANS) equations.

Findings

The adaptive features of our time-integrators are excellent tools to quantify errors arising from the data transfer between two grids. The second restart strategy proved to be advantageous only if a quadratic grid-to-grid interpolation is used. Results for turbulent flows also proved that some precautions must be taken to ensure grid convergence at any time of the simulation. Mesh adaptation, if poorly performed, can indeed lead to losing grid convergence in critical regions of the flow.

Originality/value

This study exhibits the benefits and difficulty of assessing both spatial error estimates and local error estimates to enhance the efficiency of unsteady computations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1996

Tianhong Ouyang and Kumar K. Tamma

Thermal solidification processes are an important concern in today’smanufacturing technology. Because of the complex geometric nature ofreal‐world problems, analytical techniques…

Abstract

Thermal solidification processes are an important concern in today’s manufacturing technology. Because of the complex geometric nature of real‐world problems, analytical techniques with closed‐form solutions are scarce and/or not feasible. As a consequence, various numerical techniques have been employed for the numerical simulations. Of interest in the present paper are thermal solidification problems involving single or multiple arbitary phases. In order to effectively handle such problems, the finite element method is employed in conjunction with adaptive time stepping approaches to accurately and effectively track the various phase fronts and describe the physics of phase front interactions and thermal behaviour. In conjunction with the enthalpy method which is employed to handle the latent heat release, a fixed‐grid finite element technique and an automatic time stepping approach which uses the norm of the temperature distribution differences between adjacent time step levels to control the error are employed with the scale of the norm being automatically selected. Several numerical examples, including single and multiple phase change problems, are described.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 6 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 November 2018

Nikhil Kalkote, Ashwani Assam and Vinayak Eswaran

The purpose of this paper is to solve unsteady compressible Navier–Stokes equations without the commonly used dual-time loop. The authors would like to use an adaptive…

250

Abstract

Purpose

The purpose of this paper is to solve unsteady compressible Navier–Stokes equations without the commonly used dual-time loop. The authors would like to use an adaptive time-stepping (ATS)-based local error control instead of CFL-based time-stepping technique. Also, an all-speed flow algorithm is implemented with simple low dissipation AUSM convective scheme, which can be computed without preconditioning which in general destroys the time accuracy.

Design/methodology/approach

In transient flow computations, the time-step is generally determined from the CFL condition. In this paper, the authors demonstrate the usefulness of ATS based on local time-stepping previously used extensively in ordinary differential equations (ODE) integration. This method is implemented in an implicit framework to ensure the numerical domain of dependence always contains the physical domain of dependence.

Findings

In this paper, the authors limit their focus to capture the unsteady physics for three cases: Sod’s shock-tube problem, Stokes’ second problem and a circular cylinder. The use of ATS with local truncation error control enables the solver to use the maximum allowable time-step, for the prescribed tolerance of error. The algorithm is also capable of converging very rapidly to the steady state (if there is any) after the initial transient phase. The authors present here only the first-order time-stepping scheme. An algorithmic comparison is made between the proposed adaptive time-stepping method and the commonly used dual time-stepping approach that indicates the former will be more efficient.

Originality/value

The original method of ATS based on local error control is used extensively in ODE integration, whereas, this method is not so popular in the computational fluid dynamics (CFD) community. In this paper, the authors investigate its use in the unsteady CFD computations. The authors hope that it would provide CFD researchers with an algorithm based on an adaptive time-stepping approach for unsteady calculations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 February 1992

MICHAEL J. BOCKELIE and PETER R. EISEMAN

An adaptive grid solution method is described for computing the time accurate solution of an unsteady flow problem. The solution method consists of three parts: a grid point…

Abstract

An adaptive grid solution method is described for computing the time accurate solution of an unsteady flow problem. The solution method consists of three parts: a grid point redistribution method; an unsteady Euler equation solver; and a temporal coupling routine that links the dynamic grid to the flow solver. The grid movement technique is a direct curve by curve method containing grid controls that generate a smooth grid that resolves the severe solution gradients and the sharp transitions in the solution gradients. By design, the temporal coupling procedure provides a grid that does not lag the solution in time. The adaptive solution method is tested by computing the unsteady inviscid solutions for a one‐dimensional shock tube and a two‐dimensional shock vortex interaction. Quantitative comparisons are made between the adaptive solutions, theoretical solutions and numerical solutions computed on stationary grids. Test results demonstrate the good temporal tracking of the solution by the adaptive grid, and the ability of the adaptive method to capture an unsteady solution of comparable accuracy to that computed on a stationary grid containing significantly more grid points than used in the adaptive grid.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 2 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 962