Search results

1 – 10 of 32
Article
Publication date: 5 April 2024

Fateme Akhlaghinezhad, Amir Tabadkani, Hadi Bagheri Sabzevar, Nastaran Seyed Shafavi and Arman Nikkhah Dehnavi

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to…

Abstract

Purpose

Occupant behavior can lead to considerable uncertainties in thermal comfort and air quality within buildings. To tackle this challenge, the use of probabilistic controls to simulate occupant behavior has emerged as a potential solution. This study seeks to analyze the performance of free-running households by examining adaptive thermal comfort and CO2 concentration, both crucial variables in indoor air quality. The investigation of indoor environment dynamics caused by the occupants' behavior, especially after the COVID-19 pandemic, became increasingly important. Specifically, it investigates 13 distinct window and shading control strategies in courtyard houses to identify the factors that prompt occupants to interact with shading and windows and determine which control approach effectively minimizes the performance gap.

Design/methodology/approach

This paper compares commonly used deterministic and probabilistic control functions and their effects on occupant comfort and indoor air quality in four zones surrounding a courtyard. The zones are differentiated by windows facing the courtyard. The study utilizes the energy management system (EMS) functionality of EnergyPlus within an algorithmic interface called Ladybug Tools. By modifying geometrical dimensions, orientation, window-to-wall ratio (WWR) and window operable fraction, a total of 465 cases are analyzed to identify effective control scenarios. According to the literature, these factors were selected because of their potential significant impact on occupants’ thermal comfort and indoor air quality, in addition to the natural ventilation flow rate. Additionally, the Random Forest algorithm is employed to estimate the individual impact of each control scenario on indoor thermal comfort and air quality metrics, including operative temperature and CO2 concentration.

Findings

The findings of the study confirmed that both deterministic and probabilistic window control algorithms were effective in reducing thermal discomfort hours, with reductions of 56.7 and 41.1%, respectively. Deterministic shading controls resulted in a reduction of 18.5%. Implementing the window control strategies led to a significant decrease of 87.8% in indoor CO2 concentration. The sensitivity analysis revealed that outdoor temperature exhibited the strongest positive correlation with indoor operative temperature while showing a negative correlation with indoor CO2 concentration. Furthermore, zone orientation and length were identified as the most influential design variables in achieving the desired performance outcomes.

Research limitations/implications

It’s important to acknowledge the limitations of this study. Firstly, the potential impact of air circulation through the central zone was not considered. Secondly, the investigated control scenarios may have different impacts on air-conditioned buildings, especially when considering energy consumption. Thirdly, the study heavily relied on simulation tools and algorithms, which may limit its real-world applicability. The accuracy of the simulations depends on the quality of the input data and the assumptions made in the models. Fourthly, the case study is hypothetical in nature to be able to compare different control scenarios and their implications. Lastly, the comparative analysis was limited to a specific climate, which may restrict the generalizability of the findings in different climates.

Originality/value

Occupant behavior represents a significant source of uncertainty, particularly during the early stages of design. This study aims to offer a comparative analysis of various deterministic and probabilistic control scenarios that are based on occupant behavior. The study evaluates the effectiveness and validity of these proposed control scenarios, providing valuable insights for design decision-making.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 25 January 2022

Vigneshkumar Chellappa and Vasundhara Srivastava

Science mapping is an essential application of visualization technology widely used in safety, construction management and environmental science. The purpose of this study was to…

243

Abstract

Purpose

Science mapping is an essential application of visualization technology widely used in safety, construction management and environmental science. The purpose of this study was to explore thermal comfort in residential buildings (TCinRB) research in India, identify research trends using a science mapping approach and provide a perspective for recommending future research in TCinRB.

Design/methodology/approach

This study used the VOSviewer tool to conduct a systematic analysis of the development trend in TCinRB studies in India based on Scopus Index articles published between 2001 and 2020. The annual numbers of articles, geographical locations of studies, major research organizations and authors, and the sources of journals on TCinRB were presented based on the analysis. Then, using co-authorship analysis, the collaborations among the major research groups were reported. Furthermore, research trends on TCinRB studies were visually explored using keyword co-occurrence analysis. The emerging research topics in the TCinRB research community were discovered by analyzing the authors’ keywords.

Findings

The findings revealed that studies had been discovered to pay more attention to north-east India, vernacular architecture, Hyderabad apartments and temperature performance in the past two decades. Thermal adaptation, composite climate, evaporative cooling and clothing insulation are emerging research areas in the TCinRB domain. The findings summarized mainstream research areas based on Indian climatic zones, addressed current TCinRB research gaps and suggested future research directions.

Originality/value

This review is particularly significant because it could help researchers understand the body of knowledge in TCinRB and opens the way for future research to fill an important research gap.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 1 November 2023

Deniz Artan, Isilay Tekce, Neziha Yilmaz and Esin Ergen

Occupant feedback is crucial for healthy, comfortable and productive offices. Existing facility management (FM) systems are limited in effective use of occupant feedback, as they…

Abstract

Purpose

Occupant feedback is crucial for healthy, comfortable and productive offices. Existing facility management (FM) systems are limited in effective use of occupant feedback, as they fail to collect the vital contextual information (e.g. related building element, space) associated with the feedback. The purpose of this study is to formalise the contextual information requirements for structured collection of occupant feedback for rapid diagnosis and resolution of problems and integrating occupant feedback with building information modelling (BIM) for making use of its visualisation and analysis capabilities, and eventually for effective use of occupant feedback in FM operations.

Design/methodology/approach

A mixed-methods approach was conducted in four steps: (1) identifying occupant feedback types (e.g. echo in meeting room) in office buildings, (2) examining the current practice in collecting and processing occupant feedback via use cases, (3) determining the contextual information requirements via expert interviews and (4) validation of the information requirements via a BIM-integrated prototype.

Findings

The findings present the contextual information requirements for 107 occupant feedback types grouped under thermal comfort, indoor air quality, acoustic comfort, visual comfort, building design and facility services.

Practical implications

Feedback-specific contextual information items enable structured data collection and help to avoid missing data and minimise the time lost in manual data entry and recursive interaction with the occupants during FM operations.

Originality/value

The contextual information requirements determined are expected to enhance occupant satisfaction and FM performance in office buildings by better use of the occupant feedback and integration into BIM-enabled FM and can be extended to other building types in future studies by using the proposed methodology.

Details

Facilities , vol. 42 no. 3/4
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 21 March 2024

John Aliu, Doyin Hellen Agbaje, Ayodeji Emmanuel Oke and Andrew Ebekozien

The main objective of this study is to evaluate the driving forces behind the adoption of indoor environmental quality (IEQ) principles in building designs from the perspectives…

Abstract

Purpose

The main objective of this study is to evaluate the driving forces behind the adoption of indoor environmental quality (IEQ) principles in building designs from the perspectives of Nigerian quantity surveying firms.

Design/methodology/approach

A quantitative approach was used which involved administering a well-structured questionnaire to a sample of 114 quantity surveyors. The collected data were analyzed using various statistical methods, including frequencies, percentages, mean item scores, Kruskal–Wallis test and exploratory factor analysis.

Findings

The top five ranked drivers were climate change mitigation, conservation of natural resources, reduction of waste and pollution, use of sustainable building materials and development of new materials and building systems. Based on the factor analysis, the study identified five clusters of drivers: (1) health and well-being drivers (2) economic drivers (3) environmental drivers (4) innovation and technology drivers and (5) regulatory drivers.

Practical implications

The findings from this study suggest that to effectively integrate IEQ principles, quantity surveying firms should consider developing comprehensive guidelines and checklists that align with the identified drivers and clustered categories. These resources can serve as practical tools for project teams, facilitating a structured and holistic approach to the incorporation of IEQ factors throughout the project lifecycle.

Originality/value

The study’s identification of the top drivers and the subsequent clustering of these drivers into five distinct categories contributes to the existing body of knowledge on IEQ. This approach provides a structured framework for comprehensively understanding the factors influencing IEQ adoption, offering a valuable tool for researchers, policymakers and industry practitioners.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 5 January 2023

Rand H.M. Agha and Amna Nassir Hussein

This paper aims to shed light on adaptive reuse in traditional architecture (TA) in Erbil, Iraq.

Abstract

Purpose

This paper aims to shed light on adaptive reuse in traditional architecture (TA) in Erbil, Iraq.

Design/methodology/approach

An inductive approach and qualitative method were used in this study. The inductive research approach was used because there was no clear image of adaptive reuse in traditional cafés (TCs) in Erbil. Besides, there are no studies of TCs in Erbil particularly. Thus, there is a lack of knowledge about what adaptations took place in TCs in Erbil. The qualitative method extracted themes and issues from case studies of four TCs in Erbil citadel's buffer zone. This included a physical survey and observation of the TCs in Erbil and 18 semi-structured interviews with the owners, servers and visitors.

Findings

The analysis shows the flexibility of the TCs in Erbil as a face of adaptive re-use (AR) which is explained through the capacity linked to space modifications, the addition of modern devices, the function linked to space modifications, service addition, the condition linked to space modifications and the addition of modern devices. Also, TCs in Erbil has a spatial identity and architectural value that proves it is worthy enough to be preserved through unique spirituality linked to preserving the place.

Research limitations/implications

The findings are limited to the cases of TCs in mountain regain and may not be applicable or appropriate to other cafés in other different countries.

Originality/value

There are three aspects of authenticity in the current research. Firstly, the TCs in Erbil have not been studied before. Secondly, TCs that have been discovered have made AR of themselves whilst maintaining their original function-serving beverages, to stimulate creativity. Thirdly, most of the studies of AR have dealt with historical and heritage architecture, whilst the current research paper is dealing with TA.

Details

International Journal of Building Pathology and Adaptation, vol. 42 no. 1
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 7 November 2023

Kamal Pandey and Bhaskar Basu

In the context of a developing country, Indian buildings need further research to channelize energy needs optimally to reduce energy wastage, thereby reducing carbon emissions…

Abstract

Purpose

In the context of a developing country, Indian buildings need further research to channelize energy needs optimally to reduce energy wastage, thereby reducing carbon emissions. Also, reduction in smart devices’ costs with sequential advancements in Information and Communication Technology have resulted in an environment where model predictive control (MPC) strategies can be easily implemented. This study aims to propose certain preemptive measures to minimize the energy costs, while ensuring the thermal comfort for occupants, resulting in better greener solutions for building structures.

Design/methodology/approach

A simulation-based multi-input multi-output MPC strategy has been proposed. A dual objective function involving optimized energy consumption with acceptable thermal comfort has been achieved through simultaneous control of indoor temperature, humidity and illumination using various control variables. A regression-based lighting model and seasonal auto-regressive moving average with exogenous inputs (SARMAX) based temperature and humidity models have been chosen as predictor models along with four different control levels incorporated.

Findings

The mathematical approach in this study maintains an optimum tradeoff between energy cost savings and satisfactory occupants’ comfort levels. The proposed control mechanism establishes the relationships of output variables with respect to control and disturbance variables. The SARMAX and regression-based predictor models are found to be the best fit models in terms of accuracy, stability and superior performance. By adopting the proposed methodology, significant energy savings can be accomplished during certain hours of the day.

Research limitations/implications

This study has been done on a specific corporate entity and future analysis can be done on other corporate or residential buildings and in other geographical settings within India. Inclusion of sensitivity analysis and non-linear predictor models is another area of future scope.

Originality/value

This study presents a dynamic MPC strategy, using five disturbance variables which further improves the overall performance and accuracy. In contrast to previous studies on MPC, SARMAX model has been used in this study, which is a novel contribution to the theoretical literature. Four levels of control zones: pre-cooling, strict, mild and loose zones have been used in the calculations to keep the Predictive Mean Vote index within acceptable threshold limits.

Article
Publication date: 31 October 2023

Edmond Wai-Ming Lam, Albert P.C. Chan, Timothy O. Olawumi, Irene Wong and Kayode Olatunji Kazeem

Sustainability has been the subject of several scientific investigations. Many researchers in the construction industry have also examined a range of sustainability-related…

Abstract

Purpose

Sustainability has been the subject of several scientific investigations. Many researchers in the construction industry have also examined a range of sustainability-related studies. However, few studies have thoroughly reviewed implementing sustainability concepts in high-rise residential buildings (HRRBs).

Design/methodology/approach

By adopting scientometrics and systematic review (SR), this study seeks to map out recent sustainability trends and concepts in the design, development and operation of HRRBs worldwide and in Hong Kong. With a focus on bibliographic records from the Web of Science (WoS) database, 1,395 journal articles from 2013 to 2022 were analysed. Furthermore, thirteen studies were systematically reviewed.

Findings

The SR indicated that sustainable practices in developing Hong Kong's HRRBs emphasised zero-carbon buildings, reduced energy usage and energy-efficient retrofitting. Likewise, terms such as BIM, urban density, life cycle assessment and system dynamics are strongly connected with clusters that include “residential buildings”, “high-rise buildings” and “high-rise residential buildings”. The study identified significant themes in establishing HRRBs by combining sustainable practices, emphasising urban governance and policy management, building performance and thermal comfort, energy and design optimisation, occupant behaviour and sensitivity analysis. Core sustainability ideas have improved resource management, air quality management and knowledge of user behaviour in HRRBs.

Originality/value

The study allows researchers and practitioners to explore future research directions in the built environment per the application of sustainable concepts in the development of HRRBs from design, construction and post-construction phases.

Details

Smart and Sustainable Built Environment, vol. 13 no. 2
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 29 January 2024

Wanlin Chen and Joseph Lai

Proper performance assessment of residential building renovation is crucial to sustainable urban development. However, a comprehensive review of the literature in this research…

Abstract

Purpose

Proper performance assessment of residential building renovation is crucial to sustainable urban development. However, a comprehensive review of the literature in this research domain is lacking. This study aims to uncover the study trend, research hotspots, prominent contributors, research gaps and directions in this field.

Design/methodology/approach

With a hybrid review approach adopted, relevant literature was examined in three stages. In Stage 1, literature retrieved from Scopus was screened for their relevance to the study topic. In Stage 2, bibliographic data of the shortlisted literature underwent scientometric analyses by the VOSviewer software. Finally, an in-depth qualitative review was made on the key literature.

Findings

The research hotspots in performance assessment of residential building renovation were found: energy efficiency, sustainability, thermal comfort and life cycle assessment. After the qualitative review, the following research gaps and future directions were unveiled: (1) assessments of retrofits incorporating renewable energy and energy storage systems; (2) evaluation of policy options and financial incentives to overcome financial constraints; (3) establishment of reliable embodied energy and carbon datasets; (4) indoor environment assessment concerning requirements of COVID-19 prevention and involvement of water quality, acoustic insulation and daylighting indicators; and (5) holistic decision-making model concerning residents' intentions and safety, health, well-being and social indicators.

Originality/value

Pioneered in providing the first comprehensive picture of the assessment studies on residential building renovations, this study contributes to offering directions for future studies and insights conducive to making rational decisions for residential building renovations.

Details

Smart and Sustainable Built Environment, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 17 April 2024

Zul-Atfi Ismail

This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes. Maintenance…

Abstract

Purpose

This paper aims to identify the different system approach using Building Information Modelling (BIM) technology that is equipped with decision making processes. Maintenance planning and management are integral components of the construction sector, serving the broader purpose of post-construction activities and processes. However, as Precast Concrete (PC) construction projects increase in scale and complexity, the interconnections among these activities and processes become apparent, leading to planning and performance management challenges. These challenges specifically affect the monitoring of façade components for corrective and preventive maintenance actions.

Design/methodology/approach

The concept of maintenance planning for façades, along with the main features of information and communication technology tools and techniques using building information modeling technology, is grounded in the analysis of numerous literature reviews in PC building scenarios.

Findings

This research focuses on an integrated system designed to analyze information and support decision-making in maintenance planning for PC buildings. It is based on robust data collection regarding concrete façades' failures and causes. The system aims to provide appropriate planning decisions and minimize the risk of façade failures throughout the building's lifetime.

Originality/value

The study concludes that implementing a research framework to develop such a system can significantly enhance the effectiveness of maintenance planning for façade design, construction and maintenance operations.

Details

Facilities , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 17 November 2023

Jinyu Zhang, Danni Shen, Yuxiang Yu, Defu Bao, Chao Li and Jiapei Qin

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused…

Abstract

Purpose

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused deposition modeling (FDM) 3D printing technology, and tries to refine the product development path for this composite.

Design/methodology/approach

Polylactic acid (PLA) printing filaments were deposited on prestretched Lycra-knitted fabric using desktop-level FDM 3D printing technology to construct a three-layer structure of thermally responsive 4D textiles. Subsequently, the effects of different PLA thicknesses and Lycra knit fabric relative elongation on the permanent shape of thermally responsive 4D textiles were studied. Finally, a simulation program was written, and a case in this study demonstrates the usage of thermally responsive 4D textiles and the simulation program to design a wrist support product.

Findings

The constructed three-layer structure of PLA and Lycra knitted fabric can self-form under thermal stimulation. The material can also achieve reversible transformation between a permanent shape and multiple temporary shapes. Thinner PLA deposition and higher relative elongation of the Lycra-knitted fabric result in the greater curvature of the permanent shape of the thermally responsive 4D textile. The simulation program accurately predicted the permanent form of multiple basic shapes.

Originality/value

The proposed method enables 4D textiles to directly self-form upon thermal, which helps to improve the manufacturing efficiency of 4D textiles. The thermal responsiveness of the composite also contributes to building an intelligent human–material–environment interaction system.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 32