Search results

11 – 20 of over 21000
Article
Publication date: 29 November 2018

Francesco Rosa and Serena Graziosi

The purpose of this paper is to describe an innovative Parametric and Adaptive Slicing (PAS) technique to be used for generating material addition paths along three-dimensional…

Abstract

Purpose

The purpose of this paper is to describe an innovative Parametric and Adaptive Slicing (PAS) technique to be used for generating material addition paths along three-dimensional surfaces.

Design/methodology/approach

The method is grounded on the possibility to generate layers starting from multiple reference surfaces (already available in the model or created on purpose). These are used for mathematically deriving a family of parametric surfaces whose shape and spacing (the layer thickness) can be tuned to get the desired aesthetic, technical and functional characteristics. The adhesion among layers is obtained guaranteeing a smooth transition among these surfaces.

Findings

The examples described in the paper demonstrate that the PAS technique enables the addition of the material along non-planar paths and, hence, the elimination of the staircase effect. In addition, objects printed using this technique show improved mechanical properties with respect to those printed using standard planar layers.

Research limitations/implications

As the method allows a local control of the material addition/deposition, it can be used to design the mechanical behavior of the objects to be printed.

Originality/value

The technique proposed in this paper overcomes the limitations of currently available adaptive and curved layer slicing strategies, by introducing the possibility to generate layers with a non-constant thickness whose shape morphs smoothly from one layer to another.

Article
Publication date: 17 June 2021

Nigar Ahmed and Mou Chen

The purpose of this research paper is to design a disturbance observer-based control based on the robust model reference adaptive backstepping sliding-mode control for attitude…

Abstract

Purpose

The purpose of this research paper is to design a disturbance observer-based control based on the robust model reference adaptive backstepping sliding-mode control for attitude quadrotor model subject to uncertainties and disturbances.

Design/methodology/approach

To estimate and reject the disturbance, a disturbance observer is designed for the exogenous disturbances with perturbation while a control criterion is developed for the tracking of desired output. To achieve the control performance, backstepping and sliding-mode control techniques are patched together to obtain robust chattering-free controller. Furthermore, a model reference adaptive control criterion is also combined with the design of robust control for the estimation and rejection of uncertainties and unmodeled dynamics of the attitude quadrotor.

Findings

The findings of this research work includes the design of a disturbance observer-based control for uncertain attitude quadrotor system with the ability of achieving tracking control objective in the presence of nonlinear exogenous disturbance with and without perturbation.

Practical implications

In practice, the quadrotor flight is opposed by different kinds of the disturbances. In addition, being an underactuated system, it is difficult to obtain an accurate mathematical model of quadrotor for the control design. Thus, a quadrotor model with uncertainties and disturbances is inevitable. Hence, it is necessary to design a control system with the ability to achieve the control objectives in the presence of uncertainties and disturbances.

Originality/value

Designing the control methods for quadrotor control without uncertainties and disturbances is a common practice. However, investigating the uncertain quadrotor plant in the presence of nonlinear disturbances is rarely taken into consideration for the control design. Hence, this paper presents a control algorithm to address the issues of the uncertainties and disturbances as well as investigate a control algorithm to achieve tracking performance.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Open Access
Article
Publication date: 11 April 2018

Martin Munashe Chari, Hamisai Hamandawana and Leocadia Zhou

This paper aims to present a case study-based approach to identify resource-poor communities with limited abilities to cope with the adverse effects of climate change. The study…

2338

Abstract

Purpose

This paper aims to present a case study-based approach to identify resource-poor communities with limited abilities to cope with the adverse effects of climate change. The study area is the Nkonkobe Local Municipality, in the Eastern Cape which is one of South Africa’s provinces ranked as being extremely vulnerable to the adverse effects of climate change because of high incidences of poverty and limited access to public services such as water and education. Although adaptive capacity and vulnerability assessments help to guide policy formulation and implementation by identifying communities with low coping capacities, policy implementers often find it difficult to fully exploit the utility of these assessments because of difficulties in identifying vulnerable communities. The paper attempts to bridge this gap by providing a user-friendly, replicable, practically implementable and adaptable methodology that can be used to cost-effectively and timeously identify vulnerable communities with low coping capacities.

Design/methodology/approach

A geostatistical approach was used to assess and evaluate adaptive capacities of resource-poor communities in the Nkonkobe Local Municipality. The geospatial component of this approach consisted of a multi-step Geographical Information Systems (GIS) based technique that was improvised to map adaptive capacities of different communities. The statistical component used demographic indicators comprising literacy levels, income levels, population age profiles and access to water to run automated summation and ranking of indicator scores in ArcGIS 10.2 to produce maps that show spatial locations of communities with varying levels of adaptive capacities on a scale ranging from low, medium to high.

Findings

The analysis identified 14 villages with low adaptive capacities from a total of 180 villages in the Nkonkobe Local Municipality. This finding is important because it suggests that our methodology can be effectively used to objectively identify communities that are vulnerable to climate change.

Social implications

The paper presents a tool that could be used for targeting assistance to climate change vulnerable communities. The methodology proposed is of general applicability in guiding public policy interventions aimed at reaching, protecting and uplifting socio-economically disadvantaged populations in both rural and urban settings.

Originality/value

The approach’s ability to identify vulnerable communities is useful because it aids the identification of resource-poor communities that deserve priority consideration when planning adaptation action plans to deliver support and assistance to those least capable of effectively coping with the adverse effects of climate change induced vulnerabilities.

Details

International Journal of Climate Change Strategies and Management, vol. 10 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 8 May 2018

Yongliang Wang, Yang Ju, Zhuo Zhuang and Chenfeng Li

This study aims to develop an adaptive finite element method for structural eigenproblems of cracked Euler–Bernoulli beams via the superconvergent patch recovery displacement…

Abstract

Purpose

This study aims to develop an adaptive finite element method for structural eigenproblems of cracked Euler–Bernoulli beams via the superconvergent patch recovery displacement technique. This research comprises the numerical algorithm and experimental results for free vibration problems (forward eigenproblems) and damage detection problems (inverse eigenproblems).

Design/methodology/approach

The weakened properties analogy is used to describe cracks in this model. The adaptive strategy proposed in this paper provides accurate, efficient and reliable eigensolutions of frequency and mode (i.e. eigenpairs as eigenvalue and eigenfunction) for Euler–Bernoulli beams with multiple cracks. Based on the frequency measurement method for damage detection, using the difference between the actual and computed frequencies of cracked beams, the inverse eigenproblems are solved iteratively for identifying the residuals of locations and sizes of the cracks by the Newton–Raphson iteration technique. In the crack detection, the estimated residuals are added to obtain reliable results, which is an iteration process that will be expedited by more accurate frequency solutions based on the proposed method for free vibration problems.

Findings

Numerical results are presented for free vibration problems and damage detection problems of representative non-uniform and geometrically stepped Euler–Bernoulli beams with multiple cracks to demonstrate the effectiveness, efficiency, accuracy and reliability of the proposed method.

Originality/value

The proposed combination of methodologies described in the paper leads to a very powerful approach for free vibration and damage detection of beams with cracks, introducing the mesh refinement, that can be extended to deal with the damage detection of frame structures.

Article
Publication date: 21 July 2020

Tadashi Yamaguchi, Yoshihiro Kawase and Shota Ishimura

This paper aims to propose a method to create 3-D finite element meshes automatically using the Delaunay tetrahedralization with the weighted node density technique. Using this…

Abstract

Purpose

This paper aims to propose a method to create 3-D finite element meshes automatically using the Delaunay tetrahedralization with the weighted node density technique. Using this method, the adaptive finite element analysis (FEA) was carried out for the calculation of the magnetic field of an eddy current verification model to clarify the usefulness of the method. Moreover, the error evaluation function for the adaptive FEA was also discussed.

Design/methodology/approach

The method to create the 3-D finite element meshes using the Delaunay tetrahedralization is realized by the weighted node density technique, and Zienkiewicz-Zhu’s error estimator is used as the error evaluation function of the adaptive FEA.

Findings

The magnetic flux density vectors on the node in the error evaluation function for the adaptive FEA should be calculated with the weighted average by the reciprocal of the volume of elements.

Originality/value

This paper describes the method to create 3-D finite element meshes and the comparison among calculation methods of the magnetic flux density vectors on the node for the error estimator.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 39 no. 5
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 1 July 2014

M. Yasin and Pervez Akhtar

The purpose of this paper is to design and analyze the performance of live model of Bessel beamformer for thorough comprehension of beamforming in adaptive environment and…

Abstract

Purpose

The purpose of this paper is to design and analyze the performance of live model of Bessel beamformer for thorough comprehension of beamforming in adaptive environment and compared with live model of least mean square (LMS) in terms of gain and mean square error (MSE). It presents the principal elements of communication system. The performance of designed live model is tested for its efficiency in terms of signal recovery, directive gain by minimizing MSE using the “wavrecord” function to bring live audio data in WAV format into the MATLAB workspace. These adaptive techniques are illustrated by appropriate examples.

Design/methodology/approach

The proposed algorithm framework relies on MATLAB software with the goal to obtain high efficiency in terms of signal recovery, directive gain by minimizing MSE using the “wavrecord” function to bring live audio data in WAV format. It is assumed that this audio signal is only the message or the baseband signal received by the computer. Here the authors consider computer (laptop) as a base station containing adaptive signal processing algorithm and source (mobile phone) as a desired user, so the experiment setup is designed for uplink application (user to base station) to differentiate between desired signal, multipath and interfering signals as well as to calculate their directions of arrival.

Findings

The presented adaptive live model is reliable, robust and lead to a substantial reduction of MSE, signal recovery in comparison with the LMS technique. The paper contains experimental data. Obtained results are presented clearly and the conclusion comes directly from the presented experimental data. The paper shows that the presented method leads to superior results in comparison with the popular LMS method and can be used as a better alternative in many practical applications.

Research limitations/implications

The adaptive processes described in the paper are still limited to simulation. It is because of the non-availability of real system for testing, therefore chosen research approach that is platform of MATLAB is opted for simulation. Therefore, researchers are encouraged to test the proposed algorithms on real system if possible.

Practical implications

The paper contains experimental data. The paper's impact on the society is acceptable. These implications are consistent with the findings and the conclusions of the paper. However, there is a need to extend this paper to a next level by implementing the proposed algorithms in the real time environment using FPGA technology.

Social implications

This research will improve the signal quality of wireless cellular system by increasing capacity and will reduce the total cost of the system so that cost toward subscribers be decreased.

Originality/value

The live model presented in this paper is shown to provide better results. It is the original work and can provide scientific contribution to signal processing community.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 9 February 2024

Ravinder Singh

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of…

Abstract

Purpose

This paper aims to focus on solving the path optimization problem by modifying the probabilistic roadmap (PRM) technique as it suffers from the selection of the optimal number of nodes and deploy in free space for reliable trajectory planning.

Design/methodology/approach

Traditional PRM is modified by developing a decision-making strategy for the selection of optimal nodes w.r.t. the complexity of the environment and deploying the optimal number of nodes outside the closed segment. Subsequently, the generated trajectory is made smoother by implementing the modified Bezier curve technique, which selects an optimal number of control points near the sharp turns for the reliable convergence of the trajectory that reduces the sum of the robot’s turning angles.

Findings

The proposed technique is compared with state-of-the-art techniques that show the reduction of computational load by 12.46%, the number of sharp turns by 100%, the number of collisions by 100% and increase the velocity parameter by 19.91%.

Originality/value

The proposed adaptive technique provides a better solution for autonomous navigation of unmanned ground vehicles, transportation, warehouse applications, etc.

Details

Robotic Intelligence and Automation, vol. 44 no. 1
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 1 May 2019

Ganga D. and Ramachandran V.

The purpose of this paper is to propose an optimal predictive model for the short-term forecast of real-time non-stationary machine variables by combining time series prediction…

Abstract

Purpose

The purpose of this paper is to propose an optimal predictive model for the short-term forecast of real-time non-stationary machine variables by combining time series prediction with adaptive algorithms to minimize the error and to improve the prediction accuracy.

Design/methodology/approach

The proposed model is applied for prediction of speed and controller set point of three-phase induction motor operating on closed loop speed control with AC drive and PI controller. At Stage 1, the trend of the machine variables has been extracted and added to auto-regressive moving average (ARMA) time series prediction. ARMA prediction has been carried out using different combinations of AR and MA methods in order to make prediction with less Mean Squared Error (MSE).

Findings

The prediction error indicates the inadequacy of the model to estimate the data characteristics, which has been resolved at the subsequent stage by cascading an adaptive least mean square finite impulse response filter to the time series model. The adaptive filter receives the predicted output including training data and iteratively adjusts its coefficients for zero error convergence.

Research limitations/implications

The componentized data prediction based on time series and cascade adaptive filter algorithm decomposes the non-stationary data characteristics for predictive maintenance. Evaluation of the model with different combination of time series algorithms and parameter settings of adaptive filter has been carried out to illustrate the performance of the prediction model. This prediction accuracy is compared with existing linear adaptive filter prediction using MSE as comparison index. The wide margin in the MSE values substantiates the prediction efficiency of the proposed model for machine data.

Originality/value

This model predicts the dynamic machine data with component decomposition at high accuracy, which enables to interpret the system response under dynamic conditions efficiently.

Details

Journal of Quality in Maintenance Engineering, vol. 26 no. 1
Type: Research Article
ISSN: 1355-2511

Keywords

Book part
Publication date: 5 October 2018

Olalekan Shamsideen Oshodi and Ka Chi Lam

Fluctuations in the tender price index have an adverse effect on the construction sector and the economy at large. This is largely due to the positive relationship that exists…

Abstract

Fluctuations in the tender price index have an adverse effect on the construction sector and the economy at large. This is largely due to the positive relationship that exists between the construction industry and economic growth. The consequences of these variations include cost overruns and schedule delays, among others. An accurate forecast of the tender price index is good for controlling the uncertainty associated with its variation. In the present study, the efficacy of using an adaptive neuro-fuzzy inference system (ANFIS) for tender price forecasting is investigated. In addition, the Box–Jenkins model, which is considered a benchmark technique, was used to evaluate the performance of the ANFIS model. The results demonstrate that the ANFIS model is superior to the Box–Jenkins model in terms of the accuracy and reliability of the forecast. The ANFIS could provide an accurate and reliable forecast of the tender price index in the medium term (i.e. over a three-year period). This chapter provides evidence of the advantages of applying nonlinear modelling techniques (such as the ANFIS) to tender price index forecasting. Although the proposed ANFIS model is applied to the tender price index in this study, it can also be applied to a wider range of problems in the field of construction engineering and management.

Details

Fuzzy Hybrid Computing in Construction Engineering and Management
Type: Book
ISBN: 978-1-78743-868-2

Keywords

Article
Publication date: 28 February 2020

Shweta Singh, Amar Nath Tiwari and S.N. Singh

For vector control of permanent magnet synchronous motor (PMSM) requires motor speed and rotor position estimation. The precision of the open-loop techniques of the stator flux…

Abstract

Purpose

For vector control of permanent magnet synchronous motor (PMSM) requires motor speed and rotor position estimation. The precision of the open-loop techniques of the stator flux and speed for vector control PMSM drive drops as mechanical speed decreases. The stator resistance and estimated stator flux values crisscross have a huge effect on the transient and steady-state performance of the drive at lower speed. The framework turns out to be increasingly strong against parameter crisscross and signal noises by using adaptive observers for estimation of speed and flux.

Design/methodology/approach

This paper presents a comparison of two-speed observers for the vector control PMSM drive: the sliding mode observer (SMO) and the model reference adaptive system (MRAS). A comprehensive analysis of SMO and MRAS respects dynamic, steady-state performance and robustness, affectability, stability and computational complexity has been introduced. The abstract of the advantages and disadvantages of both observer and their comparative analysis have also been discussed.

Findings

Dynamic performance steady-state performance and robustness, affectability and stability.

Originality/value

This paper presents a sensorless scheme, namely, MRAS and SMO for control of PMSM drive. These sensorless techniques have been tested for a PMSM motor drive and the motor performance was compared for both techniques. Matlab/Simulink based simulation results conclude that the adaptive methods improve dynamic response, reduces torque ripples and extended speed range.

Details

World Journal of Engineering, vol. 17 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

11 – 20 of over 21000