Search results

1 – 10 of over 24000
Article
Publication date: 1 April 2022

Shrabani Sahu and Sasmita Behera

The wind turbine (WT) is a complex system subjected to wind disturbances. Because the aerodynamics is nonlinear, the control is thus challenging. For the variation of wind speed…

Abstract

Purpose

The wind turbine (WT) is a complex system subjected to wind disturbances. Because the aerodynamics is nonlinear, the control is thus challenging. For the variation of wind speed when rated power is delivered at rated wind speed, the power is limited to the rate by the pitching of the blades of the turbine. This paper aims to address pitch control with the WT benchmark model. The possible use of appropriate adaptive controller design that modifies the control action automatically identifying any change in system parameters is explored.

Design/methodology/approach

To deal with pitch control problem when wind speed exceeds the rated wind speed of the WT, six digital self-tuning controller (STC) with different structures such as proportional integral (PI), proportional derivative (PD), Dahlin’s, pole placement, deadbeat and Takahashi has been taken herein. The system model is identified as a second-order autoregressive exogenous (ARX) model by three techniques for comparison: recursive least square method (RLS), RLS with exponential forgetting and RLS with adaptive directional forgetting identification methods. A comparative study of three identification methods, six adaptive controllers with the conventional PI controller and sliding mode controller (SMC), are shown.

Findings

As per the results, the best improvement in control of the output power by pitching in full load region of benchmark model is achieved by self-tuning PD controller based on RLS with adaptive directional forgetting method. The adaptive control design has a future in WT control applications.

Originality/value

A comparative study of identification methods, six adaptive controllers with the conventional PI controller and SMC, are shown here. As per the results, the best improvement in control of the output power by pitching in the full load region of the benchmark model has been achieved by self-tuning PD controller. The best identification method or the system is RLS with an adaptive directional forgetting method. Instead of a step input response design for the controllers, the controller design has been carried out for the stochastic wind and the performance is adjudged by the normalized sum of square tracking error (NSSE) index. The validation of the proposed self-tuning PD controller has been shown in comparison to the conventional controller with Monte-Carlo analysis to handle model parameter alteration and erroneous measurement issues.

Details

World Journal of Engineering, vol. 20 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 9 April 2021

Yang Chen and Fuchun Sun

The authors want to design an adaptive grasping control strategy without setting the expected contact force in advance to maintain grasping stable, so that the proposed control

Abstract

Purpose

The authors want to design an adaptive grasping control strategy without setting the expected contact force in advance to maintain grasping stable, so that the proposed control system can deal with unknown object grasping manipulation tasks.

Design/methodology/approach

The adaptive grasping control strategy is proposed based on bang-bang-like control principle and slippage detection module. The bang-bang-like control method is designed to find and set the expected contact force for the whole control system, and the slippage detection function is achieved by dynamic time warping algorithm.

Findings

The expected contact force can adaptively adjust in grasping tasks to avoid bad effects on the control system by the differences of prior test results or designers. Slippage detection can be recognized in time with variation of expected contact force manipulation environment in the control system. Based on if the slippage caused by an unexpected disturbance happens, the control system can automatically adjust the expected contact force back to the level of the previous stable state after a given time, and has the ability to identify an unnecessary increasing in the expected contact force.

Originality/value

Only contact force is used as feedback variable in control system, and the proposed strategy can save hardware components and electronic circuit components for sensing, reducing the cost and design difficulty of conducting real control system and making it easy to realize in engineering application field. The expected contact force can adaptively adjust due to unknown disturbance and slippage for various grasping manipulation tasks.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 4
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 9 February 2015

Narjes Ahmadian, Alireza Khosravi and Pouria Sarhadi

The purpose of this paper is to design a stable controller such that the control input is applied to the delta-wing aircraft in order to adjust the roll dynamics. The controller…

Abstract

Purpose

The purpose of this paper is to design a stable controller such that the control input is applied to the delta-wing aircraft in order to adjust the roll dynamics. The controller must provide a desired tracking performance with minimum tracking error.

Design/methodology/approach

In this paper, the second level adaptation (SLA) strategy is applied to control a delta-wing aircraft using multiple models. The implemented control structure is compared with the first level adaptation (FLA) and model reference adaptive control (MRAC) techniques.

Findings

SLA architecture not only copes with a wide uncertainty domain caused by aerodynamic effects, but also its rapid and accurate convergence is one of its most important features. Furthermore, this strategy makes a smoother control signal with respect to FLA and MRAC even at the same initial times. It should be also noted that SLA using three models, copes with uncertainty that may occur to the aircraft at high Angle Of Attacks (AOAs) at the entire flight envelope.

Originality/value

In this paper for the first time the application of this strategy is used to identify and control a delta-wing aircraft. Furthermore a systematic block diagram approach is proposed for the design.

Details

International Journal of Intelligent Unmanned Systems, vol. 3 no. 1
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 20 March 2019

Yanchao Sun, Liangliang Chen and Hongde Qin

This paper aims to investigate the distributed coordinated fuzzy tracking problems for multiple mechanical systems with nonlinear model uncertainties under a directed…

Abstract

Purpose

This paper aims to investigate the distributed coordinated fuzzy tracking problems for multiple mechanical systems with nonlinear model uncertainties under a directed communication topology.

Design/methodology/approach

The dynamic leader case is considered while only a subset of the follower mechanical systems can obtain the leader information. First, this paper approximates the system uncertainties with finite fuzzy rules and proposes a distributed adaptive tracking control scheme. Then, this paper makes a detailed classification of the system uncertainties and uses different fuzzy systems to approximate different kinds of uncertainties. Further, an improved distributed tracking strategy is proposed. Closed-loop systems are investigated using graph theory and Lyapunov theory. Numerical simulations are performed to verify the effectiveness of the proposed methods.

Findings

Based on fuzzy control and adaptive control theories, the desired distributed coordinated tracking control strategies for multiple uncertain mechanical systems are developed.

Originality/value

Compared with most existing literature, the proposed distributed tracking algorithms use fuzzy control and adaptive control techniques to cope with system nonlinear uncertainties of multiple mechanical systems. Moreover, the improved control strategy not only reduces fuzzy rules but also has higher control accuracy.

Details

Assembly Automation, vol. 39 no. 1
Type: Research Article
ISSN: 0144-5154

Keywords

Abstract

Details

Transportation and Traffic Theory in the 21st Century
Type: Book
ISBN: 978-0-080-43926-6

Article
Publication date: 9 January 2024

Zujin Jin, Zixin Yin, Siyang Peng and Yan Liu

Large optical mirror processing systems (LOMPSs) consist of multiple subrobots, and correlated disturbance terms between these robots often lead to reduced processing accuracy…

Abstract

Purpose

Large optical mirror processing systems (LOMPSs) consist of multiple subrobots, and correlated disturbance terms between these robots often lead to reduced processing accuracy. This abstract introduces a novel approach, the nonlinear subsystem adaptive dispersed fuzzy compensation control (ADFCC) method, aimed at enhancing the precision of LOMPSs.

Design/methodology/approach

The ADFCC model for LOMPS is developed through a nonlinear fuzzy adaptive algorithm. This model incorporates control parameters and disturbance terms (such as those arising from the external environment, friction and correlation) between subsystems to facilitate ADFCC. Error analysis is performed using the subsystem output parameters, and the resulting errors are used as feedback for compensation control.

Findings

Experimental analysis is conducted, specifically under the commonly used concentric circle processing trajectory in LOMPS. This analysis validates the effectiveness of the control model in enhancing processing accuracy.

Originality/value

The ADFCC strategy is demonstrated to significantly improve the accuracy of LOMPS output, offering a promising solution to the problem of correlated disturbances. This work holds the potential to benefit a wide range of practical applications.

Details

Industrial Robot: the international journal of robotics research and application, vol. 51 no. 1
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 February 2023

Kaixin Li, Ye He, Kuan Li and Chengguo Liu

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this…

Abstract

Purpose

With the increasing demands of industrial applications, it is imperative for robots to accomplish good contact-interaction with dynamic environments. Hence, the purpose of this research is to propose an adaptive fractional-order admittance control scheme to realize a robot–environment contact with high accuracy, small overshoot and fast response.

Design/methodology/approach

Fractional calculus is introduced to reconstruct the classical admittance model in this control scheme, which can more accurately describe the complex physical relationship between position and force in the interaction process of the robot–environment. In this control scheme, the pre-PID controller and fuzzy controller are adopted to improve the system force tracking performance in highly dynamic unknown environments, and the fuzzy controller is used to improve the trajectory, transient and steady-state response by adjusting the pre-PID integration gain online. Furthermore, the stability and robustness of this control algorithm are theoretically and experimentally demonstrated.

Findings

The excellent force tracking performance of the proposed control algorithm is verified by constructing highly dynamic unstructured environments through simulations and experiments. In simulations and experiments, the proposed control algorithm shows satisfactory force tracking performance with the advantages of fast response speed, little overshoot and strong robustness.

Practical implications

The control scheme is practical and simple in the actual industrial and medical scenarios, which requires accurate force control by the robot.

Originality/value

A new fractional-order admittance controller is proposed and verified by experiments in this research, which achieves excellent force tracking performance in dynamic unknown environments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 29 March 2011

Mohamad Boukattaya, Tarak Damak and Mohamed Jallouli

The purpose of this paper is to address the trajectory tracking control in task space of a non‐holonomic wheeled mobile manipulator with parameter uncertainties and disturbances…

Abstract

Purpose

The purpose of this paper is to address the trajectory tracking control in task space of a non‐holonomic wheeled mobile manipulator with parameter uncertainties and disturbances. The proposed algorithm is robust adaptive control strategy where parametric uncertainties are compensated by adaptive update techniques and the disturbances are suppressed. The system stability and the convergence of tracking errors to zero are rigorously proved using a Lyapunov theory.

Design/methodology/approach

The proposed algorithm is derived based on the advantage of the robot regressor dynamics that express the highly non‐linear robot dynamics in a linear form in terms of the known and unknown robot parameters. The update law for the unknown dynamic parameters is obtained using Lyapunov theory.

Findings

Simulation experiments show the effectiveness of the proposed robust adaptive based controller in comparison with a classical passivity based controller.

Originality/value

The proposed adaptive approach is interesting for the control of the mobile manipulators in the task space coordinate even in the presence of dynamic uncertainties and external disturbances.

Details

International Journal of Intelligent Computing and Cybernetics, vol. 4 no. 1
Type: Research Article
ISSN: 1756-378X

Keywords

Article
Publication date: 17 October 2016

Jun He, Minzhou Luo, Xinglong Zhang, Marco Ceccarelli, Jian Fang and Jianghai Zhao

This paper aims to present an adaptive fuzzy sliding mode controller with nonlinear observer (AFSMCO) for the redundant robotic manipulator handling a varying payload to achieve a…

Abstract

Purpose

This paper aims to present an adaptive fuzzy sliding mode controller with nonlinear observer (AFSMCO) for the redundant robotic manipulator handling a varying payload to achieve a precise trajectory tracking in the task space. This approach could be applied to solve the problems caused by the dynamic effect of the varying payload to robotic system caused by model uncertainties.

Design/methodology/approach

First, a suitable observer using the recursive algorithm is presented for an accurate estimation of external disturbances caused by a variable payload. Second, the adaptive fuzzy logic is designed to approximate the parameters of the sliding mode controller combined with nonlinear observer (SMCO) to avoid chattering in real time. Moreover, Lyapunov theory is applied to guarantee the stability of the proposed closed-loop robotic system. Finally, the effectiveness of the proposed control approach and theoretical discussion are proved by simulation results on a seven-link robot and demonstrated by a humanoid robot platform.

Findings

The varying payload leads to large variations in the dynamics of the manipulator and the tracking error. To achieve high-precision position tracking, nonlinear observer was introduced to feed into the sliding mode control (SMC) which had improved the ability to resist the external disturbance. In addition, the chattering caused by the SMC was eliminated by recursively approximating the switching gain with the usage of adaptive fuzzy logic. Therefore, a distributed control strategy solves the problems of an SMC implementation in improving its tracking performance and eliminating the chattering of the system control.

Originality/value

The AFSMCO is proposed for the first time and used to control the redundant robotic manipulator that handles the varying payload. The proposed control algorithm possesses better robustness and higher precision for the trajectory tracking than classical SMC.

Details

Industrial Robot: An International Journal, vol. 43 no. 6
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 16 January 2020

Rohollah Hasanzadeh Fereydooni, Hassan Siahkali, Heidar Ali Shayanfar and Amir Houshang Mazinan

This paper aims to propose an innovative adaptive control method for lower-limb rehabilitation robots.

Abstract

Purpose

This paper aims to propose an innovative adaptive control method for lower-limb rehabilitation robots.

Design/methodology/approach

Despite carrying out various studies on the subject of rehabilitation robots, the flexibility and stability of the closed-loop control system is still a challenging problem. In the proposed method, surface electromyography (sEMG) and human force-based dual closed-loop control strategy is designed to adaptively control the rehabilitation robots. A motion analysis of human lower limbs is performed by using a wavelet neural network (WNN) to obtain the desired trajectory of patients. In the outer loop, the reference trajectory of the robot is modified by a variable impedance controller (VIC) on the basis of the sEMG and human force. Thenceforward, in the inner loop, a model reference adaptive controller with parameter updating laws based on the Lyapunov stability theory forces the rehabilitation robot to track the reference trajectory.

Findings

The experiment results confirm that the trajectory tracking error is efficiently decreased by the VIC and adaptively correct the reference trajectory synchronizing with the patients’ motion intention; the model reference controller is able to outstandingly force the rehabilitation robot to track the reference trajectory. The method proposed in this paper can better the functioning of the rehabilitation robot system and is expandable to other applications of the rehabilitation field.

Originality/value

The proposed approach is interesting for the design of an intelligent control of rehabilitation robots. The main contributions of this paper are: using a WNN to obtain the desired trajectory of patients based on sEMG signal, modifying the reference trajectory by the VIC and using model reference control to force rehabilitation robot to track the reference trajectory.

Details

Industrial Robot: the international journal of robotics research and application, vol. 47 no. 3
Type: Research Article
ISSN: 0143-991X

Keywords

1 – 10 of over 24000