Search results

1 – 10 of 261
Article
Publication date: 17 November 2021

Mahmood Khaksar-e Oshagh, Mostafa Abbaszadeh, Esmail Babolian and Hossein Pourbashash

This paper aims to propose a new adaptive numerical method to find more accurate numerical solution for the heat source optimal control problem (OCP).

Abstract

Purpose

This paper aims to propose a new adaptive numerical method to find more accurate numerical solution for the heat source optimal control problem (OCP).

Design/methodology/approach

The main aim of this paper is to present an adaptive collocation approach based on the interpolating wavelets to solve an OCP for finding optimal heat source, in a two-dimensional domain. This problem arises when the domain is heated by microwaves or by electromagnetic induction.

Findings

This paper shows that combination of interpolating wavelet basis and finite difference method makes an accurate structure to design adaptive algorithm for such problems which usually have non-smooth solution.

Originality/value

The proposed numerical technique is flexible for different OCP governed by a partial differential equation with box constraint over the control or the state function.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 April 2020

Lei Wang, Chuang Xiong and Qinghe Shi

Considering that uncertain factors widely exist in engineering practice, an adaptive collocation method (ACM) is developed for the structural fuzzy uncertainty analysis.

Abstract

Purpose

Considering that uncertain factors widely exist in engineering practice, an adaptive collocation method (ACM) is developed for the structural fuzzy uncertainty analysis.

Design/methodology/approach

ACM arranges points in the axis of the membership adaptively. Through the adaptive collocation procedure, ACM can arrange more points in the axis of the membership where the membership function changes sharply and fewer points in the axis of the membership where the membership function changes slowly. At each point arranged in the axis of the membership, the level-cut strategy is used to obtain the cut-level interval of the uncertain variables; besides, the vertex method and the Chebyshev interval uncertainty analysis method are used to conduct the cut-level interval uncertainty analysis.

Findings

The proposed ACM has a high accuracy without too much additional computational efforts.

Originality/value

A novel ACM is developed for the structural fuzzy uncertainty analysis.

Details

Engineering Computations, vol. 37 no. 9
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 29 April 2014

Moises Ferber, Christian Vollaire, Laurent Krähenbühl and João Antônio Vasconcelos

The purpose of this paper is to introduce a novel methodology for uncertainty quantification in large-scale systems. It is a non-intrusive approach based on the unscented…

Abstract

Purpose

The purpose of this paper is to introduce a novel methodology for uncertainty quantification in large-scale systems. It is a non-intrusive approach based on the unscented transform (UT) but it requires far less simulations from a EM solver for certain models.

Design/methodology/approach

The methodology of uncertainty propagation is carried out adaptively instead of considering all input variables. First, a ranking of input variables is determined and after a classical UT is applied successively considering each time one more input variable. The convergence is reached once the most important variables were considered.

Findings

The adaptive UT can be an efficient alternative of uncertainty propagation for large dimensional systems.

Originality/value

The classical UT is unfeasible for large-scale systems. This paper presents one new possibility to use this stochastic collocation method for systems with large number of input dimensions.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33 no. 3
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 6 July 2015

Yinkun Wang, Jianshu Luo, Xiangling Chen and Lei Sun

– The purpose of this paper is to propose a Chebyshev collocation method (CCM) for Hallén’s equation of thin wire antennas.

Abstract

Purpose

The purpose of this paper is to propose a Chebyshev collocation method (CCM) for Hallén’s equation of thin wire antennas.

Design/methodology/approach

Since the current induced on the thin wire antennas behaves like the square root of the distance from the end, a smoothed current is used to annihilate this end effect. Then the CCM adopts Chebyshev polynomials to approximate the smoothed current from which the actual current can be quickly recovered. To handle the difficulty of the kernel singularity and to realize fast computation, a decomposition is adopted by separating the singularity from the exact kernel. The integrals including the singularity in the linear system can be given in an explicit formula while the others can be evaluated efficiently by the fast cosine transform or the fast Fourier transform.

Findings

The CCM convergence rate is fast and this method is more efficient than the other existing methods. Specially, it can attain less than 1 percent relative errors by using 32 basis functions when a/h is bigger than 2×10−5 where h is the half length of wire antenna and a is the radius of antenna. Besides, a new efficient scheme to evaluate the exact kernel has been proposed by comparing with most of the literature methods.

Originality/value

Since the kernel evaluation is vital to the solution of Hallén’s and Pocklington’s equations, the proposed scheme to evaluate the exact kernel may be helpful in improving the efficiency of existing methods in the study of wire antennas. Due to the good convergence and efficiency, the CCM may be a competitive method in the analysis of radiation properties of thin wire antennas. Several numerical experiments are presented to validate the proposed method.

Details

COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 34 no. 4
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 10 May 2019

Kumar Kaushik Ranjan, Sandeep Kumar, Amit Tyagi and Ambuj Sharma

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative…

Abstract

Purpose

The real challenge in the solution of contact problems is the lack of an optimal adaptive scheme. As the contact zone is a priori unknown, successive refinement and iterative method are necessary to obtain a high-accuracy solution. The purpose of this paper is to provide an optimal adaptive scheme based on second-generation finite element wavelets for the solution of non-linear variational inequality of the contact problem.

Design/methodology/approach

To generate an elementary multi-resolution mesh, the authors used hierarchical bases (HB) composed of Lagrange finite element interpolation functions. These HB functions are customized using second-generation wavelet techniques for a fast convergence rate. At each step of the algorithm, the active set method along with mesh adaptation is used for solving the constrained minimization problem of contact case. Wavelet coefficients-based error indicators are used, and computation is focused on mesh zones with a high error indication. The authors take advantage of the wavelet transform to develop a parameter-free adaptive scheme to generate an appropriate and optimal mesh.

Findings

Adaptive wavelet Galerkin scheme (AWGS), a newly developed method for multi-scale mesh adaptivity in this work, is a combination of the second-generation wavelet transform and finite element method and significantly improves the accuracy of the results without approximating an additional problem of error estimation equations. A comparative study is performed taking a solution on a highly refined mesh and results are generated using AWGS.

Practical implications

The proposed adaptive technique can be utilized in the simulation of mechanical and biomechanical structures where multiple bodies come into contact with each other. The algorithm of the method is easy to implement and found to be successful in producing a sufficiently accurate solution with relatively less number of mesh nodes.

Originality/value

Although many error estimation techniques have been developed over the past several years to solve contact problems adaptively, because of boundary non-linearity development, a reliable error estimator needs further investigation. The present study attempts to resolve this problem without having to recompute the entire solution on a new mesh.

Details

Engineering Computations, vol. 36 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 16 May 2023

Mostafa Abbaszadeh, AliReza Bagheri Salec and Afaq Salman Alwan

This paper aims to introduce a new numerical approach based on the local weak form and the Petrov–Galerkin idea to numerically simulation of a predator–prey system with…

Abstract

Purpose

This paper aims to introduce a new numerical approach based on the local weak form and the Petrov–Galerkin idea to numerically simulation of a predator–prey system with two-species, two chemicals and an additional chemotactic influence.

Design/methodology/approach

In the first proceeding, the space derivatives are discretized by using the direct meshless local Petrov–Galerkin method. This generates a nonlinear algebraic system of equations. The mentioned system is solved by using the Broyden’s method which this technique is not related to compute the Jacobian matrix.

Findings

This current work tries to bring forward a trustworthy and flexible numerical algorithm to simulate the system of predator–prey on the nonrectangular geometries.

Originality/value

The proposed numerical results confirm that the numerical procedure has acceptable results for the system of partial differential equations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2017

Alex A. Schmidt, Alice de Jesus Kozakevicius and Stefan Jakobsson

The current work aims to present a parallel code using the open multi-processing (OpenMP) programming model for an adaptive multi-resolution high-order finite difference scheme…

Abstract

Purpose

The current work aims to present a parallel code using the open multi-processing (OpenMP) programming model for an adaptive multi-resolution high-order finite difference scheme for solving 2D conservation laws, comparing efficiencies obtained with a previous message passing interface formulation for the same serial scheme and considering the same type of 2D formulations laws.

Design/methodology/approach

The serial version of the code is naturally suitable for parallelization because the spatial operator formulation is based on a splitting scheme per direction for which the flux components are numerically computed by a Lax–Friedrichs factorization independently for each row or column. High-order approximations for numerical fluxes are computed by the third-order essentially non-oscillatory (ENO) and fifth-order weighted essentially non-oscillatory (WENO) interpolation schemes, assuming sparse grids in each direction. The grid adaptivity is obtained by a cubic interpolating wavelet transform applied in each space dimension, associated to a threshold operator. Time is evolved by a third order TVD Runge–Kutta method.

Findings

The parallel formulation is implemented automatically at compiling time by the OpenMP library routines, being virtually transparent to the programmer. This over simplifies any concerns about managing and/or updating the adaptive grid when compared to what is necessary to be done when other parallel approaches are considered. Numerical simulations results and the large speedups obtained for the Euler equations in gas dynamics highlight the efficiency of the OpenMP approach.

Research limitations/implications

The resulting speedups reflect the effectiveness of the OpenMP approach but are, to a large extension, limited by the hardware used (2 E5-2620 Intel Xeon processors, 6 cores, 2 threads/core, hyper-threading enabled). As the demand for OpenMP threads increases, the code starts to make explicit use of the second logical thread available in each E5-2620 processor core and efficiency drops. The speedup peak is reached near the possible maximum (24) at about 22, 23 threads. This peak reflects the hardware configuration and the true software limit should be located way beyond this value.

Practical implications

So far no attempts have been made to parallelize other possible code segments (for instance, the ENO|-WENO-TVD code lines that process the different data components which could potentially push the speed up limit to higher values even further. The fact that the speedup peak is located close to the present hardware limit reflects the scalability properties of the OpenMP programming and of the splitting scheme as well. Consequently, it is likely that the speedup peak with the OpenMP approach for this kind of problem formulation will be close to the physical (and/or logical) limit of the hardware used.

Social implications

This work is the result of a successful collaboration among researchers from two different institutions, one internationally well-known and with a long-term experience in applied mathematics for industrial applications and the other in a starting process of international academic insertion. In this way, this scientific partnership has the potential of promoting further knowledge exchange, involving students and other collaborators.

Originality/value

The proposed methodology (use of OpenMP programming model for the wavelet adaptive splitting scheme) is original and contributes to a very active research area in the past years, namely, adaptive methods for conservation laws and their parallel formulations, which is of great interest for the entire scientific community.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 July 2017

Domenico Borzacchiello, Jose Vicente Aguado and Francisco Chinesta

The purpose of this paper is to present a reduced order computational strategy for a multi-physics simulation involving a fluid flow, electromagnetism and heat transfer in a…

Abstract

Purpose

The purpose of this paper is to present a reduced order computational strategy for a multi-physics simulation involving a fluid flow, electromagnetism and heat transfer in a hot-wall chemical vapour deposition reactor. The main goal is to produce a multi-parametric solution for fast exploration of the design space to perform numerical prototyping and process optimisation.

Design/methodology/approach

Different reduced order techniques are applied. In particular, proper generalized decomposition is used to solve the parameterised heat transfer equation in a five-dimensional space.

Findings

The solution of the state problem is provided in a compact separated-variable format allowing a fast evaluation of the process-specific quantities of interest that are involved in the optimisation algorithm. This is completely decoupled from the solution of the underlying state problem. Therefore, once the whole parameterised solution is known, the evaluation of the objective function is done on-the-fly.

Originality/value

Reduced order modelling is applied to solve a multi-parametric multi-physics problem and generate a fast estimator needed for preliminary process optimisation. Different order reduction techniques are combined to treat the flow, heat transfer and electromagnetism problems in the framework of separated-variable representations.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 2 August 2023

Aurojyoti Prusty and Amirtham Rajagopal

This study implements the fourth-order phase field method (PFM) for modeling fracture in brittle materials. The weak form of the fourth-order PFM requires C1 basis functions for…

Abstract

Purpose

This study implements the fourth-order phase field method (PFM) for modeling fracture in brittle materials. The weak form of the fourth-order PFM requires C1 basis functions for the crack evolution scalar field in a finite element framework. To address this, non-Sibsonian type shape functions that are nonpolynomial types based on distance measures, are used in the context of natural neighbor shape functions. The capability and efficiency of this method are studied for modeling cracks.

Design/methodology/approach

The weak form of the fourth-order PFM is derived from two governing equations for finite element modeling. C0 non-Sibsonian shape functions are derived using distance measures on a generalized quad element. Then these shape functions are degree elevated with Bernstein-Bezier (BB) patch to get higher-order continuity (C1) in the shape function. The quad element is divided into several background triangular elements to apply the Gauss-quadrature rule for numerical integration. Both fourth-order and second-order PFMs are implemented in a finite element framework. The efficiency of the interpolation function is studied in terms of convergence and accuracy for capturing crack topology in the fourth-order PFM.

Findings

It is observed that fourth-order PFM has higher accuracy and convergence than second-order PFM using non-Sibsonian type interpolants. The former predicts higher failure loads and failure displacements compared to the second-order model due to the addition of higher-order terms in the energy equation. The fracture pattern is realistic when only the tensile part of the strain energy is taken for fracture evolution. The fracture pattern is also observed in the compressive region when both tensile and compressive energy for crack evolution are taken into account, which is unrealistic. Length scale has a certain specific effect on the failure load of the specimen.

Originality/value

Fourth-order PFM is implemented using C1 non-Sibsonian type of shape functions. The derivation and implementation are carried out for both the second-order and fourth-order PFM. The length scale effect on both models is shown. The better accuracy and convergence rate of the fourth-order PFM over second-order PFM are studied using the current approach. The critical difference between the isotropic phase field and the hybrid phase field approach is also presented to showcase the importance of strain energy decomposition in PFM.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 15 September 2023

Marissa Condon

The paper proposes an efficient and insightful approach for solving neutral delay differential equations (NDDE) with high-frequency inputs. This paper aims to overcome the need to…

Abstract

Purpose

The paper proposes an efficient and insightful approach for solving neutral delay differential equations (NDDE) with high-frequency inputs. This paper aims to overcome the need to use a very small time step when high frequencies are present. High-frequency signals abound in communication circuits when modulated signals are involved.

Design/methodology/approach

The method involves an asymptotic expansion of the solution and each term in the expansion can be determined either from NDDE without oscillatory inputs or recursive equations. Such an approach leads to an efficient algorithm with a performance that improves as the input frequency increases.

Findings

An example shall indicate the salient features of the method. Its improved performance shall be shown when the input frequency increases. The example is chosen as it is similar to that in literature concerned with partial element equivalent circuit (PEEC) circuits (Bellen et al., 1999). Its structure shall also be shown to enable insights into the behaviour of the system governed by the differential equation.

Originality/value

The method is novel in its application to NDDE as arises in engineering applications such as those involving PEEC circuits. In addition, the focus of the method is on a technique suitable for high-frequency signals.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 43 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 261