Search results

1 – 10 of over 3000
Article
Publication date: 4 November 2014

Meshack O. Efeoma and Ola Uduku

The purpose of this paper is to adduce the most appropriate thermal comfort assessment method for determining human thermal comfort and energy efficient temperature control in…

Abstract

Purpose

The purpose of this paper is to adduce the most appropriate thermal comfort assessment method for determining human thermal comfort and energy efficient temperature control in office buildings in tropical West Africa.

Design/methodology/approach

This paper examines the Adaptive Thermal Comfort Standard, from its research evolution to its contemporary use as an environmental design assessment Standard. It compares the adaptive component of ASHRAE Standard 55 and the European CEN/EN 15251. It begins by reviewing relevant literature and then produces a comparative analysis of the two standards, before suggesting the most appropriate Adaptive Thermal Comfort Standard for use in assessing conditions in tropical climate conditions. The suggested Standard was then used to analyse data collected from the author's pilot research into thermal conditions, in five office buildings situated in the city of Enugu, South Eastern Nigeria.

Findings

The paper provides insight as to why the ASHRAE adaptive model is more suitable for thermal comfort assessment of office buildings in the tropical West African climate. This was demonstrated by using the ASHRAE Thermal Comfort Standard to assess comfort conditions from pilot research study data collected on Nigerian office buildings by the author.

Originality/value

The paper compares the adaptive component of ASHRAE Standard 55 with CEN/EN 15251, and their different benefits for use in tropical climates. It suggested the need for further research studies and application of the ASHRAE Adaptive Thermal Comfort Standard in the tropical West African climate.

Article
Publication date: 16 June 2021

Subhashini S., Thirumaran Kesavaperumal and Masa Noguchi

Occupants dwelling in hot climatic regions of India for a longer term are tolerable to high temperature levels than predicted by American Society of Heating, Refrigerating and…

Abstract

Purpose

Occupants dwelling in hot climatic regions of India for a longer term are tolerable to high temperature levels than predicted by American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) standards. The purpose of this study is to evaluate the thermal sensations (TS) and neutral temperature of the occupants in naturally ventilated (NV) and air-conditioned (AC) classrooms of two technical institutions located in the same premises in the suburbs of Madurai. The main focus of this study is to understand the occupants’ behaviour in response to the thermal conditions of the educational buildings particularly in the warm and humid climatic zone of Madurai.

Design/methodology/approach

This research collected data through field studies. The data included 383 survey questionnaires from NV classrooms and 285 from AC classrooms, as well as on-site measurements of interior and exterior weather conditions. The TS results show that the students preferred well-designed NV classrooms than AC classrooms. A new adaptive comfort equation derived from this study can be applied to NV classrooms in warm and humid climates where mean outdoor temperature exceeds 40°C.

Findings

The neutral temperature derived for NV classrooms in Madurai ranged from 29°C to 34°C. Thus, the occupants in the NV classrooms of the higher learning educational institutions in the warm and humid climatic region of Madurai can adapt well to higher indoor temperature levels than predicted by ASHRAE comfort levels with minimum adjustments.

Research limitations/implications

The study was limited to only occupants in two premier higher learning technical educational institutions located in Madurai region within 5–10 km within the city limits to understand the implications of microclimate with respect to the urban context. Thus, further research is required to examine the tendency under local conditions in other regions beyond those applied to this study.

Social implications

The findings of this study showed that occupants in higher learning educational intuitions in Madurai prefer NV classrooms than AC classrooms. Therefore, with rising demands of energy use for mechanical ventilation and the associated high cost for running AC buildings, architects should prioritize the design of energy efficient buildings through the optimal use of passive design strategies for ventilation and thermal comfort. This study gives a base data for architects to understand the adaptive limitations of occupants and design NV buildings that can promote natural ventilation and provide better thermal environments that can help increase the productivity of students.

Originality/value

This paper was an attempt to develop the adaptive comfort model for NV classrooms in Madurai regions. There has been no attempt to identify the adaptive comfort levels of occupants in higher learning technical educational institutions located in warm and humid climatic region of India.

Article
Publication date: 1 December 2012

Mike Adebamowo and Adetokunbo O. Ilesanmi

Buildings have a considerable impact on the environment being responsible for a substantial proportion of global energy consumption, thus contributing significantly to the…

Abstract

Buildings have a considerable impact on the environment being responsible for a substantial proportion of global energy consumption, thus contributing significantly to the anthropogenic CO2 emissions, which evidence suggests is the main cause of climate change. Mitigation and adaptation measures are required to tackle the challenges of climate change. Adaptive measures – structural and behavioural strategies – are the focus of this paper. Structural strategies include flexible and adaptive structural systems; while behavioural strategies cover the spatial, personal, and psychological control measures which may influence the design and operations of buildings. The study explores the adaptive thermal comfort of occupants and examines the design strategies for adapting buildings to climate change in the tropical context, with a view to determine the effectiveness of these strategies as observed in the case study. The study was conducted during the rainy and dry seasons in Abeokuta, Ogun State, Nigeria, located in a warm humid climate zone.

The Institute of Venture Design student hostel was used as case-study to conduct the survey on a sample of 40 respondents by means of structured questionnaire. The respondents' thermal sensation and access to thermal controls were determined, and their thermal sensation and thermal adaptability in both seasons comparatively analyzed. Indoor environmental parameters including air temperature, mean radiant temperature, relative humidity and air velocity were also measured. The data were analyzed using relevant descriptive and inferential statistics. The study discussed the effectiveness of design strategies available for building adaptation in an era of climate change within the warm humid environment, concluding on the need for greater synergy between the techno-structural and socio-behavioural dimensions of building adaptation.

Details

Open House International, vol. 37 no. 4
Type: Research Article
ISSN: 0168-2601

Keywords

Book part
Publication date: 18 January 2024

Bhimsen Rajkumarsingh, Robert T. F. Ah King and Khalid Adam Joomun

The performance of thermal comfort utilising machine learning and its acceptability by students and other users at the Professor Sir Edouard Lim Fat Engineering Tower at the…

Abstract

The performance of thermal comfort utilising machine learning and its acceptability by students and other users at the Professor Sir Edouard Lim Fat Engineering Tower at the University of Mauritius are evaluated in this study. Students and building occupants were asked to fill out surveys on-site as data was gathered from sensors throughout the structure. The Thermal Sensation Vote (TSV) and other important data were collected through the surveys, including the effect of wind on thermal comfort. An adaptive model incorporating solar and wind effects was evaluated using multiple linear regression techniques and RStudio. Three models were used to evaluate thermal comfort, including the adaptive one. Numerous models were compared and evaluated in order to select the best one. It was found that the adaptive model (Model 1) was deemed to be the best model for its application. It was also found that Fanger's PMV/PPD (Model 2) was a very good approach to determining thermal comfort. Through thorough analysis, it was concluded that the range of air temperature and wind speed for thermal comfort was 25.830°C–28.0°C and 0.26 m/s to 0.42 m/s, respectively. In order for cities to remain secure, resilient and sustainable, it will be important to manage thermal comfort and reduce populations' exposure to heat stress (SDG 11). The achievement of income and productivity goals will be hampered if measures to protect populations from heat stress are not taken (SDG 8). Thermal regulation is also necessary for the provision of numerous health services (SDG 3).

Details

Artificial Intelligence, Engineering Systems and Sustainable Development
Type: Book
ISBN: 978-1-83753-540-8

Keywords

Article
Publication date: 28 March 2023

Ibrahim Neya, Daniel Yamegueu, Adamah Messan, Yezouma Coulibaly, Arnaud Louis Sountong-Noma Ouedraogo and Yawovi Mawuénya Xolali Dany Ayite

The stabilization of earthen blocks improves their mechanical strength and avoids adobe construction erosion due to rainwater. However, the stabilization affects the thermal…

Abstract

Purpose

The stabilization of earthen blocks improves their mechanical strength and avoids adobe construction erosion due to rainwater. However, the stabilization affects the thermal properties of the earthen blocks, and thus their capacity to provide adequate thermal comfort to occupants. This article examines the influence of cement and geopolymer binders on thermal comfort in compressed earthen buildings in hot and arid climates.

Design/methodology/approach

The test cell is on the building platform in Burkina Faso. The building is made of compressed earth blocks (CEB) consisting of laterite, water and binder. The thermal models of the building were implemented in EnergyPlus v9.0.1 software. Empirical validation is used to check whether the model used for the thermal dynamic simulation can reproduce with accuracy the thermal behavior in a real situation. The adaptive thermal comfort model of ASHRAE 55–2010 was used to assess thermal comfort in long-term hot and dry tropical conditions.

Findings

The results show that the CEB buildings remain hot despite the use of cement or geopolymer binder. Indeed, with both cement and geopolymer binders, on a daily basis, 19 h and 15 h are uncomfortable during, respectively, the hot and cold seasons. An increase of 1% in cement content raises the comfort hours by 9.2 h during the hot season and 11.7 h during the cold season. Hence, the comfort time varies linearly with the cement content in the building material. Moreover, there is no linear relationship between comfort time and geopolymer rate.

Research limitations/implications

Complementary work should also assess the influence of stabilization on building humidity levels. In fact, earthen materials are very sensitive to outdoor humidity and indoor humidity affects thermal comfort even if it is not taken into account in the ASHRAE adaptive thermal comfort model.

Practical implications

The present study will certainly contribute to a better valorization of clay potential in countries with similar climatic conditions.

Social implications

The use of geopolymer binder is a suitable ecological option to replace the cement binder. It is important to mention that nighttime comfort can be increased through passive strategies such as natural ventilation.

Originality/value

Most CEB material stabilization analyses including cement and geopolymer ones were mostly investigated at the laboratory scale and less at the building scale. Also, the influence of the binder rate on the thermal performance of buildings made of cement and geopolymer has not yet been assessed. This paper fills this gap of knowledge by assessing the impact of cement and geopolymer binder rates on the thermal comfort of CEB dwellings.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 21 April 2022

Omar Al-Hafith, Satish BK and Pieter de Wilde

Traditional central courtyards have been advocated for being thermally efficient for hot-climate regions. However, exploring previous literature shows that it is not clear to what…

Abstract

Purpose

Traditional central courtyards have been advocated for being thermally efficient for hot-climate regions. However, exploring previous literature shows that it is not clear to what extent courtyards are truly thermally comfortable. This study determines the level of thermal comfort in residential courtyards in hot-climate regions, taking Baghdad as a case study.

Design/methodology/approach

This study develops a novel Courtyard Thermal Usability Index (CTUI) to quantify the ability of courtyards to provide thermal comfort to occupants. CTUI is the fraction of useable thermally comfortable hours in courtyards of the total occupation hours during a specific period. To operationalise CTUI, the research employs the Envi-met 4.2 simulation tool to determine the annual thermal conditions of 360 courtyards. An adaptive thermal comfort model developed by Al-Hafith in 2020 for Iraq is used to judge simulated thermal conditions and determine CTUI.

Findings

CTUI enables determining the level of thermal comfort courtyards offer to occupants by showing the ratio of the thermally comfortable period versus the occupation period. Results show that, in Iraq, annually, courtyards offer up to 38% comfortable hours out of the total potential occupation hours. The rest of the time the courtyard will not be comfortable, mostly due to overheating. When designing courtyards, the most effective geometric property impacting courtyards' thermal conditions is width/height. The most important microclimatic factor impacting occupants' thermal sensation is mean radiant temperature (MRT). This study can be used to inform designing thermally efficient courtyards for hot-climate regions.

Originality/value

This study presents the first assessment of the thermal efficiency of courtyards in hot-climate regions depending on an assessment of their ability to provide thermal comfort to occupants. The study presents a novel index that can be used to quantify the ability of courtyards to provide a thermally comfortable environment to occupants.

Details

Smart and Sustainable Built Environment, vol. 12 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 29 July 2021

Peiman Pilechiha, Alireza Norouziasas, Hoorieh Ghorbani Naeini and Kasmir Jolma

In vernacular buildings, many climatic and passive solutions have been used to create indoor thermal comfort. Seasonal occupant movement is an example of a traditional response to…

Abstract

Purpose

In vernacular buildings, many climatic and passive solutions have been used to create indoor thermal comfort. Seasonal occupant movement is an example of a traditional response to increasing thermal comfort. This article investigates the influence of these user behaviours on thermal comfort in courtyard houses.

Design/methodology/approach

Parametric models of three different scenarios of courtyard houses are simulated. The courtyard houses are located in Shiraz, Iran, and share the same orientation and construction materials. To enhance the accuracy of the study, the indoor adaptive thermal comfort (ATC) analysis is performed with three different window-to-wall ratios (WWR) of 25, 50 and 75%. The ACT analysis is performed on an hourly basis for summer and winter scenarios.

Findings

The results demonstrate that the indoor ATC is 8.3% higher in winter than in the summer in the seasonal zones. During the summer, the amount of ATC is relatively sustained in all zones. Unlike common beliefs, seasonal movement can enhance the ATC, especially during winter, specifically in the northern part of the courtyard. In northern zones, the seasonal movement of occupants improves the indoor ATC from 10.1 to 23.7%, and in southern zones, the improvement is from 2.2 to 4.8%.

Originality/value

This research presents a new numerical investigation into occupants' seasonal movements in courtyard houses during summer and winter. It provides a precise pattern to show how much this seasonal movement can affect the habitant's ATC.

Details

Smart and Sustainable Built Environment, vol. 11 no. 4
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 21 November 2016

Ricardo Barbosa, Romeu Vicente and Rui Santos

This paper aims to investigate vulnerability factors that influence thermal comfort in residential buildings in the context of climate change and variability, as well as adaptive

Abstract

Purpose

This paper aims to investigate vulnerability factors that influence thermal comfort in residential buildings in the context of climate change and variability, as well as adaptive strategies that can be adopted. There is a need for research that systematically addresses factors influencing thermal comfort in the context of climate change.

Design/methodology/approach

Using a vulnerability framework, this paper reviews existing literature to identify factors driving impacts to comfort, as well as strategies to increase adaptive capacity in buildings. Data were collected from several sources including international organizations, scientific journals and government authorities, following an initial Web-based subject search using Boolean operators.

Findings

Significant impacts can be expected in terms of thermal comfort inside buildings depending on four vulnerability factors: location; age and form; construction fabric and occupancy and behaviour. Despite the fact that the majority of the existing studies are technically driven and spatially restricted, there is strong evidence of interdependencies of scales in managing vulnerability and adaptive capacity.

Practical implications

Results from this review emphasise the importance of balance mitigation with adaptation regarding new building design and when retrofitting old buildings. The factors identified here can also be used to assist in construction of simplified tools such as a vulnerability index that helps in identifying the most vulnerable buildings and dwellings and assist in retrofit decisions.

Originality/value

The paper offers critical insight regarding implications in building design and policy in a vulnerability framework.

Details

International Journal of Climate Change Strategies and Management, vol. 8 no. 5
Type: Research Article
ISSN: 1756-8692

Keywords

Article
Publication date: 23 October 2023

Francis O. Uzuegbunam, Fynecountry N. Aja and Eziyi O. Ibem

This research aims to investigate the influence of building design on the thermal comfort of occupants of naturally ventilated hospital (NVH) wards to identify the aspects with…

Abstract

Purpose

This research aims to investigate the influence of building design on the thermal comfort of occupants of naturally ventilated hospital (NVH) wards to identify the aspects with the most significant influence on the thermal comfort of hospital buildings during the hot-dry season in the hot-humid tropics of Southeast Nigeria.

Design/methodology/approach

Field measurements, physical observations and a questionnaire survey of 60 occupants of the wards of the Joint Presbyterian Hospital, Uburu in Ebonyi State, Nigeria were undertaken. The data were analysed using Humphreys' neutral temperature formula, descriptive statistics and multiple regression analysis.

Findings

The results revealed that the neutral temperature for the wards ranges from 26.2 °C to 29.9 °C, the thermal condition in the wards was not comfortable because it failed to meet the ASHRAE Standard 55 as only 65% of the occupants said the thermal condition was acceptable. The number and sizes of windows, building orientation, the presence of high-level windows and higher headroom significantly influenced the occupants' thermal comfort vote.

Practical implications

This research is valuable in estimating comfort temperature and identifying aspects that require attention in enhancing the capacity of NVH wards to effectively meet the thermal comfort needs of occupants in the hot-humid tropics of Southeast Nigeria and other regions that share similar climatic conditions.

Originality/value

To the best of the authors’ knowledge, this is the first study of this nature that provides valuable feedback for building design professionals on the performance of existing hospital buildings in meeting users' thermal comfort needs in the hot-dry season of the hot-humid tropics in Southeast Nigeria.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 22 July 2022

Ender Peker

The purpose of this paper is to explore the role of locally-produced architectural design solutions for the provision of thermal comfort in the vernacular settlements of Mardin…

Abstract

Purpose

The purpose of this paper is to explore the role of locally-produced architectural design solutions for the provision of thermal comfort in the vernacular settlements of Mardin, Turkey.

Design/methodology/approach

With an aim of extracting clues of climate responsive design, the paper develops a socio-technical assessment methodology and presents a comparative inquiry between the vernacular and contemporary built environments of Mardin.

Findings

Findings display that the capacity of vernacular architecture in providing a more climate responsive living environment than contemporary one is in fact correlated with the design of living spaces in harmony with the local climatic conditions as well as how inhabitants traditionally use and behave in designed space.

Originality/value

The paper argues for a need for (re)conceptualization of thermal comfort within and through the production of housing, as well as by taking into account the ways in which end-users interact, adapt and sustain end-users' everyday life in accordance with the local climatic characteristics.

Details

Open House International, vol. 47 no. 3
Type: Research Article
ISSN: 0168-2601

Keywords

1 – 10 of over 3000