Search results

1 – 10 of 86
Article
Publication date: 23 January 2007

Arthur Bens, Hermann Seitz, Günter Bermes, Moritz Emons, Andreas Pansky, Barbara Roitzheim, Edda Tobiasch and Carsten Tille

To describe the development of a novel polyether(meth)acrylate‐based resin material class for stereolithography with alterable material characteristics.

2682

Abstract

Purpose

To describe the development of a novel polyether(meth)acrylate‐based resin material class for stereolithography with alterable material characteristics.

Design/methodology/approach

A complete overview of details to composition parameters, the optimization and bandwidth of mechanical and processing parameters is given. Initial biological characterization experiments and future application fields are depicted. Process parameters are studied in a commercial 3D systems Viper stereolithography system, and a new method to determine these parameters is described herein.

Findings

Initial biological characterizations show the non‐toxic behavior in a biological environment, caused mainly by the (meth)acrylate‐based core components. These photolithographic resins combine an adjustable low Young's modulus with the advantages of a non‐toxic (meth)acrylate‐based process material. In contrast to the mostly rigid process materials used today in the rapid prototyping industry, these polymeric formulations are able to fulfill the extended need for a soft engineering material. A short overview of sample applications is given.

Practical implications

These polymeric formulations are able to meet the growing demand for a resin class for rapid manufacturing that covers a bandwidth from softer to stiffer materials.

Originality/value

This paper gives an overview about the novel developed material class for stereolithography and should be therefore of high interest to people with interest in novel rapid manufacturing materials and technology.

Details

Rapid Prototyping Journal, vol. 13 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 26 September 2008

Carola Tröger, Arthur T. Bens, Günter Bermes, Ricarda Klemmer, Johannes Lenz and Stephan Irsen

The purpose of this paper is to describe the ageing behaviour of acrylate‐based resins for stereolithography (SL) technology using different test methods and to investigate these…

1423

Abstract

Purpose

The purpose of this paper is to describe the ageing behaviour of acrylate‐based resins for stereolithography (SL) technology using different test methods and to investigate these effects on polymers.

Design/methodology/approach

Controlling the polymer degradation requires an understanding of many different phenomena, including the different chemical mechanisms underlying structural changes in polymer macromolecules, the influences of polymer morphology, the complexities of oxidation chemistry and the complex reaction pathways of polymer additives. Several ageing characterization experiments are given.

Findings

The paper covers the ageing process analysis of acrylate‐based polymers. An overview of the ageing behaviour is given, along with the bandwidth of material characteristics for a prolonged lifetime of this material class.

Research limitations/implications

For research and development in the field of rapid prototyping (RP) materials data about ageing behaviour and environmental effects are crucial. The authors show possible methods for measuring these effects and discuss the consequences in material research using a recently developed biocompatible SL resin as an example.

Practical implications

The study of the ageing behaviour of polymers is important for understanding their usability, storage, lifetime and recycling. The presented polymeric formulations are able to meet the growing demand for both soft and stiff manufacturing resin materials in the engineering and medical fields.

Originality/value

The analysis of the ageing behaviour of polymer materials is an important issue for engineering applications, recycling of post‐consumer plastic waste, as well as the use of polymers as biological implants and matrices for drug delivery and the lifetime of an article. The paper gives an overview of details involving ageing behaviour and their meaning for applications of acrylate‐based SL resins and is therefore of high importance to people with interest in long‐term behaviour and ageing of RP materials.

Details

Rapid Prototyping Journal, vol. 14 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 March 2014

Marlon Wesley Machado Cunico and Jonas de Carvalho

Over the last several years, the range of applications for the photopolymerisation process has been steadily increasing, especially in such areas as rapid prototyping, UV inks, UV…

Abstract

Purpose

Over the last several years, the range of applications for the photopolymerisation process has been steadily increasing, especially in such areas as rapid prototyping, UV inks, UV coats and orthodontic applications. In spite of this increase, there are still several challenges to be overcome when the application concerns materials formulation and their mechanical properties. In this context, the main aim of this work is to outline the contribution of the formulation components for the parameters of the photopolymerisation process and the resultant mechanical properties of the material.

Design/methodology/approach

For this research, the authors have applied multivariable analysis methods, which allow the identification of principal conclusions based on experimental results. For the experimental analysis, the authors applied design of experiment, while the material formulation was based on methyl methacrylate as a monomer, Omnrad 2500 as a photoinitiator and trimethylolpropane triacrylate as an oligomer. The authors analysed the photopolymerisation rate, viscosity, mechanical tensile strength, flexural stiffness and softening. These results comprise a multiobjective optimisation study to identify the ideal material formulation for additive manufacturing applications. The values chosen for the materials were the following: the initiator concentration was 2 and 5% wt., the monomer volume was 5 and 10 ml and the oligomer volume was 3 and 5 ml. To analyse the system kinetics and the photopolymerisation rate, the authors identified the polymer conversion rate through a photometric-cum-gravimetric method with a wavelength of 390 nm at the peak intensity. For the softening test, the authors identified the stiffness of the material as a function of temperature, characterising the thermal-mechanical behaviour of the material and determining its degree of crystallinity (cross-linking). Additionally, the authors performed an optimisation to maximise the mechanical tensile strength, flexural stiffness, softening temperature and photopolymerisation rate while minimising the viscosity.

Findings

Based on these studies, it was possible to identify the influence of the monomer/oligomer ratio and the initiator concentration as function of polymerisation rate, viscosity, mechanical tensile strength, stiffness and softening of the material. It was also possible to determine the photopolymerisation rate in addition to the constants of propagation and termination. As a result of these studies, the authors identified a material formulation that resulted in a softening temperature greater than 70°C, while the viscosity of material remained lower than 3 cP. The mechanical ultimate tensile strength was between 10 and 50 MPa, and the stiffness was between 1.6 and 5.8 GPa. The effect of cross-linking on the process highlighted the interaction between the monomer/oligomer ratio and the initiator. The contribution of the initiator and the inhibitor to the polymerisation rate was identified via a numerical model, which allows the prediction of the material's behaviour in different process conditions, as such curing time and penetration depth.

Originality/value

The main value of this work is to show the possibility of optimized photopolymerizable systems through an experimental approach as a function of the mechanical properties of material. In addition, it emphasised the possibility of predicting the material behaviour in front of different situations.

Details

Rapid Prototyping Journal, vol. 20 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 1991

It is interesting to note — some might even say surprising — that the European radiation curing market is larger, more dynamic and more innovative than its US and Japanese…

Abstract

It is interesting to note — some might even say surprising — that the European radiation curing market is larger, more dynamic and more innovative than its US and Japanese equivalents. Raw materials, at a current value of £70m, are currently growing at 8–15% p.a. on average, compared with 5–7% p.a. in the US. According to a new study from IAL Consultants, European suppliers are continually at the forefront of chemical research. New materials appear frequently — a stark contrast to the US, where new materials are rarely introduced due to the onerous bureaucratic difficulties involved.

Details

Pigment & Resin Technology, vol. 20 no. 2
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 18 January 2016

Marlon Wesley Machado Cunico and Jonas de Carvalho

The purpose of this study is to present a novel additive manufacturing (AM) technology which is based on selective formation of cellulose-acrylate composite. Besides proposing a…

Abstract

Purpose

The purpose of this study is to present a novel additive manufacturing (AM) technology which is based on selective formation of cellulose-acrylate composite. Besides proposing a process that combines the benefits of fibres and photopolymers, this paper reports the development of material, characterisation of a straight line composite formation, adherence between layers and functional feasibility of the proposed concept.

Design/methodology/approach

For the preliminary evaluation of the proposed process, a composite material based on cellulose-photopolymer was developed, while a multi-objective optimisation study indicated the formulation which results in the maximum values of layer adherence, tensile strength of composite and the effect of the water on the mechanical strength of material. For the characterisation of the process, three main subjects were analysed: the characterisation of straight line composite formation, the effect of composite formation process on previous layers and the functional feasibility of technology.

Findings

In the material development, the tensile strength of dry composite was identified between 20 and 30 MPa, while the tensile strength of wet composite was between 5 and 12 MPa. It is important to note that the dry and wet cellulose presented tensile strength, respectively, equal to 15 and 1 MPa, indicating the possibility of residual material removal only with the use of water or other soft solvent. The values of adherence between layers (peeling test) were found to be between 0.12 and 0.15 kgf, and the photopolymer formulation which resulted in the maximum adherence has monomer/oligomer ratio equal to 1.5 and 2 per cent wt of photoinitiator percentual. As result of the optimisation study, the material formulation was compounded by monomer – 10 ml, oligomer – 4.5 ml and photoinitiator – 2 per cent, being found suitable to characterise and evaluate the proposed process. The study of composite formation along a straight line showed values of line width between 1,400 and 3,500 μm in accordance with light power, laser velocity and laser beam diameter. On the other hand, the number of previous layers affected by the composite formation varied from 0 to 4, indicating a potential process limit. In the functional feasibility study, a feasible process window which resulted in the maximum dimensional deviation equal to 0.5 mm was identified. In addition, the mean mechanical tensile strength was found to be around 30 MPa for longitudinal laser trajectory (90°) and 15 MPa for transversal laser trajectory (0°), highlighting the anisotropic behaviour of final parts according to the manufacturing strategy.

Originality/value

This paper proposed a novel AM technology and also described studies related to the characterisation of this concept. This work might also be useful to the development of other AM processes and applications.

Article
Publication date: 2 January 2018

Marlon Wesley Machado Cunico and Jonas de Carvalho

During the past years, numerous market segments have increasingly adopted additive manufacturing technologies for product development and complex parts design. Consequently…

Abstract

Purpose

During the past years, numerous market segments have increasingly adopted additive manufacturing technologies for product development and complex parts design. Consequently, recent developments have expanded the technologies, materials and applications in support of emerging needs, in addition to improving current processes. The present work aims to propose and characterise a new technology that is based on selective formation of metal-polymer composites with low power source.

Design/methodology/approach

To develop this project, the authors have divided this work in three parts: material development, process feasibility and process optimisation. For the polymeric material development, investigation of metallic and composite materials assessed each material’s suitability for selective composite formation besides residual material removal. The primary focus was the evaluation of proposed process feasibility. The authors applied multivariable methods, where the main responses were line width, penetration depth, residual material removal feasibility, layer adherence strength, mechanical strength and dimensional deviation of resultant object. The laser trace speed, distance between formation lines and laser diameter were the main variables. Removal agent and polymeric material formulation were constants. In the last part of this work, the authors applied a multi-objective optimisation. The optimisation objectives minimized processing time and dimensional deviation while maximizing mechanical strength in xy direction and mechanical strength in z direction.

Findings

With respect to material development, the polymeric material tensile strength was found between 30 and 45 MPa at break. It was also seen that this material has low viscosity before polymerized (between 2 and 20 cP) essential for composite formation and complete material removal. In that way, the authors also identified that the residual material removal process was possible by redox reaction. In contrast with that the final object was marked by the polymer which covers the metallic matrix, protecting the object protects against chemical reactions. For the feasibility study, the authors identified the process windows for adherence between composite layers, demonstrating the process feasibility. The composite mechanical strength was shown to be between 120 and 135 MPa in xy direction and between 35 and 45 MPa in z direction. In addition, the authors have also evidenced that the geometrical dimensional distortion might vary until 5 mm, depending on process configuration. Despite that, the authors identified an optimised configuration that exposes the potential application of this new technology. As this work is still in a preliminary development stage, further studies are needed to be done to better understand the process and market segments wherein it might be applied.

Originality/value

This paper proposed a new and innovative additive manufacturing technology which is based on metal-polymer composites using low power source. Additionally, this work also described studies related to the investigation of concept feasibility and proposed process characterisation. The authors have focused on material development and studied the functional feasibility, which at the same time might be useful to the development of other additive manufacturing processes.

Details

Rapid Prototyping Journal, vol. 24 no. 1
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2016

Marlon Wesley Machado Cunico and Jonas de Carvalho

Over the past few years, the number of related research to additive manufacturing (AM) has risen. The selective composite formation (SCF) can also be found among the new…

Abstract

Purpose

Over the past few years, the number of related research to additive manufacturing (AM) has risen. The selective composite formation (SCF) can also be found among the new technologies that were developed. This technology was first introduced in 2013, and because of its innovative character, there are still many challenges to be overcome. Therefore, the main aim of this study is to present a finite element method which allows to investigate the processing of the material during the selective formation of a composite material based on cellulose and acrylic.

Design/methodology/approach

In the beginning, we introduced a brand new finite element method approach which is based on light transmittance network and photopolymerisation in transient state. This method is mainly characterised by internal light absorption, transversal reflectance, light transmittance coefficient and photopolymerisation kinetics. The authors defined experimentally the main model coefficients besides investigating the formation of composite material in six case studies. The main variables evaluated in those studies were the number of layers and the number of lines. By the end, the degree of polymer conversion and the preliminary evaluation of adherence between layers were identified in addition to the formation profile of composite material.

Findings

The presented method evidence that the SCF resulted in a profile of polymerisation which is different from profiles found in vat polymerisation processes. It was shown that the light diffraction increases polymerisation area to outside of laser limits and reduces the penetration depth. It was also exposed that the selective formation of composite material on the top layer interferes with the polymerisation of previous layers and might increase the polymerised area in about 25 per cent per layer. By the end, adherence between layers was evidenced because of a high-pass filter that limited polymer conversion to over 60 per cent. In this case, the adherence between the top layers was provided by the interface between layers, while the deeper layers resulted in a solid formed by composite.

Originality/value

This paper presents research results related to a very new AM technology and also proposes a new method to characterise this concept. Because of this new analytic approach, the process planning can be simulated and optimised, in addition to being a useful tool for other researches related to photocurable polymers and AM technologies.

Details

Rapid Prototyping Journal, vol. 22 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 January 2024

Seda Aygül, Serkan Yılmazsönmez, Arzu Soyalp and Ayse Aytac

Titanium dioxide (TiO2) has high opacity, high brightness and whiteness, owing to its high refractive index value. It is mainly used in the coating industry and continuous efforts…

Abstract

Purpose

Titanium dioxide (TiO2) has high opacity, high brightness and whiteness, owing to its high refractive index value. It is mainly used in the coating industry and continuous efforts have been made to replace some of the TiO2 in paint with new pigments. This study aims to replace part of TiO2 pigment with various percentages of BaSO4, CaCO3 and kaolin in styrene butyl acrylate-based paint formulations, without changing the properties of paints using only titanium dioxide.

Design/methodology/approach

To determine the optimum use rate of new pigment mixing, opacity, gloss, scrub resistance and weather resistance properties have been investigated in the water-based paint formulation. The morphological properties of these samples were examined by scanning electron microscopy analysis.

Findings

In the total color change (ΔE) measurements, it was observed that the sample coded 85Ti/15Ba produced extremely similar results to the situation when TiO2 was used alone. It was seen that the best results were obtained when 85Ti/15Ba was used instead of TiO2.

Originality/value

Comparison research on the impact of replacing TiO2 with BaSO4, CaCO3 and kaolin on the performance characteristics of water-based styrene butyl acrylate-based paint formulations has not been done in the literature, according to the literature search.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 April 2005

Hong Wenbin, Lee Yong Tsui and Gong Haiqing

To investigate the “staircase effect”, which is one of the most significant manifestations of part inaccuracy in liquid‐based rapid prototyping (RP) processes, on multi‐layer RP…

1937

Abstract

Purpose

To investigate the “staircase effect”, which is one of the most significant manifestations of part inaccuracy in liquid‐based rapid prototyping (RP) processes, on multi‐layer RP parts made using a thick layer deposition and photo‐curing process in a stepless rapid prototyping (SRP) system.

Design/methodology/approach

The building of a five‐layer part is simulated layer by layer using a finite element method based on an incremental elastic model, to analyze the staircase effect due to shrinkage induced by polymerization and temperature variation. The influence of various factors such as layer thickness and intensity of incident UV light is studied. The results were verified experimentally.

Findings

Results show that the staircase amount increases 20 percent and 300 percent with light intensity increasing from 65 to 145 mW/cm2 and layer thickness increasing from 0.2 to 2.0 mm, respectively. It is also found that the overall staircase is below 100 μm, which suggests that the SRP process improves surface quality greatly compared to other RP systems, and can provide enough accuracy for fabricating functional parts.

Research limitations/implications

The results apply only to the material used in the work: an acrylate‐based photopolymer resin, C123, produced by Tianjin Chemical Co., China. Also, the thickness of the layers is fixed at 6 mm.

Practical implications

Provides a method to analyze the origin and amount of the staircase effect, upon which to better control the surface finish of RP parts. New materials and different layer thicknesses can be investigated using the same method.

Originality/value

Apart from the above practical implication, this paper establishes the parameters that influence the shrinkage of the material used in SRP.

Details

Rapid Prototyping Journal, vol. 11 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 30 September 2019

Andrea Mantelli, Marinella Levi, Stefano Turri and Raffaella Suriano

The purpose of this study is to demonstrate the potential of three-dimensional printing technology for the remanufacturing of end-of-life (EoL) composites. This technology will…

2764

Abstract

Purpose

The purpose of this study is to demonstrate the potential of three-dimensional printing technology for the remanufacturing of end-of-life (EoL) composites. This technology will enable the rapid fabrication of environmentally sustainable structures with complex shapes and good mechanical properties. These three-dimensional printed objects will have several application fields, such as street furniture and urban renewal, thus promoting a circular economy model.

Design/methodology/approach

For this purpose, a low-cost liquid deposition modeling technology was used to extrude photo-curable and thermally curable composite inks, composed of an acrylate-based resin loaded with different amounts of mechanically recycled glass fiber reinforced composites (GFRCs). Rheological properties of the extruded inks and their printability window and the conversion of cured composites after an ultraviolet light (UV) assisted extrusion were investigated. In addition, tensile properties of composites remanufactured by this UV-assisted technology were studied.

Findings

A printability window was found for the three-dimensional printable GFRCs inks. The formulation of the composite printable inks was optimized to obtain high quality printed objects with a high content of recycled GFRCs. Tensile tests also showed promising mechanical properties for printed GFRCs obtained with this approach.

Originality/value

The novelty of this paper consists in the remanufacturing of GFRCs by the three-dimensional printing technology to promote the implementation of a circular economy. This study shows the feasibility of this approach, using mechanically recycled EoL GFRCs, composed of a thermoset polymer matrix, which cannot be melted as in case of thermoplastic-based composites. Objects with complex shapes were three-dimensional printed and presented here as a proof-of-concept.

Details

Rapid Prototyping Journal, vol. 26 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 86