Search results

1 – 10 of 408
Article
Publication date: 4 January 2013

R.D. Kulkarni, M.E. Chaudhari and S. Mishra

The purpose of this paper is to provide a critical and in‐depth review of the present status and recent developments in synthetic methodologies, reaction engineering, process…

1057

Abstract

Purpose

The purpose of this paper is to provide a critical and in‐depth review of the present status and recent developments in synthetic methodologies, reaction engineering, process design and quality control aspects associated with the manufacture of mono and multifunctional acrylate monomers.

Design/methodology/approach

This paper reviews commercially important UV cure mono and multifunctional acrylate monomers. It covers their synthesis, catalyst, and appropriate solvents for azeotropic removal of byproducts. The detail discussion on catalysis, basis of design of reactors and commercial plant and the process engineering associated with the manufacture has been supported through citation of synthesis of various acrylate monomers. The methodologies adopted for determination of physical, chemical and compositional characterisation of acrylate monomers have been presented. In addition, the guidelines regarding the bulk storage and commercial handling of acrylates have been reviewed.

Findings

The reaction engineering of esterification reaction between acrylic acid and polyol has been worked out to provide the basis for selection of reactors. The reaction has been modeled as a series – parallel complex reaction for providing explanation for generation of various byproducts/adducts and multiple esters.

Practical implications

The detailed discussion on formation, characterisation and treatment of Michael adducts and purification of acrylate monomers will be relevant for new researchers for further development. A review of guidelines on selection of homogenous and heterogeneous catalysts for synthesis of acrylate monomers has been presented.

Originality/value

Since the related literature on acrylate monomers is scarce, scattered and proprietary, the consolidated coverage in one paper will be useful.

Details

Pigment & Resin Technology, vol. 42 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 October 2001

Christian Decker

UV‐radiation curing has become a well accepted technology which has found its main applications in the coating industry, the graphic arts and microelectronics. The liquid to solid…

4563

Abstract

UV‐radiation curing has become a well accepted technology which has found its main applications in the coating industry, the graphic arts and microelectronics. The liquid to solid phase change proceeds within a fraction of a second on intense illumination at ambient temperature. The kinetics of such ultrafast polymerization have been followed in situ by real‐time infrared spectroscopy. This technique proved well suited to assess the performance of the various constituents of a UV‐curable formulation (photoinitiator, monomer, functionalized oligomer) from measurements of the actual polymerization rate and of the final cure extent. The photopolymerization of both radical‐type (acrylates) and cationic type (epoxides, vinyl ethers) monomers has been examined, as well as that of monomer blends. Interpenetrating polymer networks have been synthetized by photocrosslinking of a hybrid acrylate/epoxide system which generates a hard and scratch‐resistant polymer material.

Details

Pigment & Resin Technology, vol. 30 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 1 January 1972

P.G. Garrett

Although the technique of electron curing has been well developed, there are very few suitable coatings available.

Abstract

Although the technique of electron curing has been well developed, there are very few suitable coatings available.

Details

Pigment & Resin Technology, vol. 1 no. 1
Type: Research Article
ISSN: 0369-9420

Article
Publication date: 28 March 2023

Zheqing Gong and Lijun Chen

Fluorinated silicon polymers are expected to be adopted in specific coatings to afford outstanding advantages, such as high chemical and photochemical resistance, low surface…

Abstract

Purpose

Fluorinated silicon polymers are expected to be adopted in specific coatings to afford outstanding advantages, such as high chemical and photochemical resistance, low surface tension and low refractive index. The modified acrylate resin is prepared via solution polymerization of fluorine and silicon monomers, acrylate monomers and other functional monomers. The purpose of this paper is that the fluorine and silicon monomers such as vinyltriethoxysilane (VTES) and hexafluorobutyl methacrylate (HFMA) and some cheap monomers such as styrene are used to prepare the cationic acrylic resin.

Design/methodology/approach

The fluorine and silicon modified cationic acrylic resin is prepared via solution polymerization technology, which uses butyl acrylate (BA), methyl methacrylate (MMA), styrene (St), HFMA, VTES, dimethylaminoethyl methacrylate (DMAEMA) and hydroxypropyl methacrylate (HPMA) as the co-polymerized monomers, propylene glycol monomethyl ether (PGME) as solvent and 2,2-Azo-bis-iso-butyronitrile (AIBN) as the initiator to create a resin to introduce the Si–O and C–F into the polymer chains. The cathodic electrodeposition (CED) coatings were prepared by mixing the synthetic resin and blocked isocyanate.

Findings

The influence of the amounts of HFMA and VETS on the resin and the resultant CED coatings is investigated in detail. The optimum amounts of HFMA and VETS are obtained, which is 7–8% and 4–5%, respectively. The hydrophobicity and the acid and alkaline resistance of the film are improved when VETS and HFMA are introduced to co-polymerize with other monomers.

Originality/value

The fluorine and silicon monomers such as VTES and HFMA and some cheap monomers such as styrene, which are used to prepare the cationic acrylic resin, are seldom reported in the open literature.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 February 2022

Zheqing Gong, Shusen Cao, Zhibin Cai and Lijun Chen

There are three double bonds in the chemical structure of diallyl maleate. The purpose of this study is that the acrylate is modified with diallyl maleic anhydride to make the…

Abstract

Purpose

There are three double bonds in the chemical structure of diallyl maleate. The purpose of this study is that the acrylate is modified with diallyl maleic anhydride to make the propionate resin present a spatial network structure, thereby improving the performance of the acrylate resin.

Design/methodology/approach

Methyl methacrylate (MMA) and butyl acrylate(BA) were used as were used as main monomers. Diallyl maleate (DAM) was used as crosslinking monomer and dodecafluoroheptyl methacrylate (DFMA) was used as fluoromonomer. Potassium persulfate (KPS) was used as thermal decomposition initiator, sodium lauryl sulfate (AS) and sodium dodecyl sulfonate (SDS) were used as anionic emulsifiers, and EFS-470 (Alkyl alcohol polyether type nonionic emulsifier) was a non-ionic emulsifier.

Findings

Through optimizing the reaction conditions, the uniform and stable latex is obtained. The polymer of structure was characterized by Fourier transform infrared spectroscopy (FTIR). Thermogravimetric analysis (TGA) and contact angle (CA) were tested on latex films. The particle size and distribution range of emulsion were tested with nano particle size analyzer.

Originality/value

The experimental results showed that the thermal decomposition temperature of the acrylic coating film increased by 20.56°C after modification. In addition, the effect of cross-linking density on the water contact angle of the fluorocarbon groups in DFMA when they migrate to the surface of the latex film during drying has been explored. The experimental results show that a higher degree of cross-linking will hinder the migration of fluorocarbon groups to the surface of the resin film.

Article
Publication date: 7 September 2012

Pallavi P. Deshmukh, Prakash A. Mahanwar and Sunil S. Sabharwal

Urethane Acrylate Oligomer with 100% solids was synthesised and characterised in order to study the application in electron beam curing with varying ratio of Trimethylol propane…

Abstract

Purpose

Urethane Acrylate Oligomer with 100% solids was synthesised and characterised in order to study the application in electron beam curing with varying ratio of Trimethylol propane triacrylate (TMPTA). The purpose of this paper is to study effect of TMPTA addition on the crosslink density and different coating properties.

Design/methodology/approach

Polyester polyol was synthesised by reacting single diacid, adipic acid (AA), with Pentaerythritol (PENTA) and 1,6‐hexanediol (HD). Further, Urethane acrylate resin was synthesised by using Isophorone diisocyanate (IPDI), hydroxy ethyl acrylate (HEA) and Polyester polyol. The polyester polyol and urethane acrylate oligomer were characterised by 1H NMR, 13C NMR, FTIR and GPC. Further, TMPTA was added as a crosslinker to the urethane acrylate oligomer and cured by electron beam radiation. The cured UA films having varying concentration of TMPTA were employed to evaluate thermal property, contact angle analysis, mechanical and chemical properties.

Findings

The obtained results showed improvement in their chemical properties, mechanical properties, thermal properties and water contact angle at 20% of TMPTA iconcentration. The TMPTA also reduced the dose required for the curing.

Research limitations/implications

The resin can be synthesised from different isocyanates as TDI, MDI and HMDI, etc. The study can also be done with different multi or mono functional monomers such as methacrylate, hexanediol diacrylate, ethylene glycol diacrylate, etc.

Practical implications

The paper provides the better solution to reduce the cost of the electron beam radiation required for the curing.

Social implications

The method presented in the paper could be very useful for controlling environmental pollution; as the conventional method of curing releases volatile organic compounds (VOC).

Originality/value

In this paper, urethane acrylate and TMTPA cured with electron beam are shown to offer good coating properties. A high‐solid urethane acrylate coating would find numerous industrial applications in surface coatings.

Details

Pigment & Resin Technology, vol. 41 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 August 2014

Lijun Chen, Wen Li and Wei Jiang

The purpose of this paper was to prepare a fluorinated acrylate resin, which would be synthesised via solution polymerisation of fluorinated monomer, acrylate monomers and other…

Abstract

Purpose

The purpose of this paper was to prepare a fluorinated acrylate resin, which would be synthesised via solution polymerisation of fluorinated monomer, acrylate monomers and other functional monomers. Relevant characterisation and application studies were also carried out. Fluorinated polymers are expected to be adopted in specific coatings to afford outstanding advantages, such as high chemical and photochemical resistance, low surface tension and low refractive index. At present, fluorinated cathodic electrodeposition (CED) coatings are attracting the attention that they deserve and seldom reported.

Design/methodology/approach

Cationic fluorinated acrylic resin was successfully prepared by solution polymerisation of dodecafluoroheptyl methacrylate, butyl acrylate, methyl methacrylate, dimethylaminoethyl methacrylate and methacrylic acid initiated by 2,2,-azo-bis-iso-butyronitrile in a solvent of butyl cellosolve. The resultant resin was neutralised with acetic acid. The CED coatings are prepared when moderate amounts of blocked isocyanate and distilled water were added into the resultant resin.

Findings

The hydrophobicity of the film is improved when the fluorinated monomer is introduced to co-polymerise with other monomers. The optimum conditions of preparing the resin are as follows: the amount of azodiisobutyronitrile is controlled with the range of 3.0 and 4.0 per cent; the amine value of the resin is 70 mg KOH/g; the hydroxyl value of resin and mole ratio of hydroxyl to isocyanate is 60 mg KOH/g and 1.0/1.0, respectively; the degree of neutralisation of the resin is within the range of 35 and 40 per cent.

Practical implications

The cationic fluorinated acrylic resin can be used to be the binder of CED coatings, which can be applied to electrodeposition finishing for high demand of exterior decorative and weather resistance, such as hardware, accessories, office furniture and so on.

Originality/value

The cationic fluorinated acrylic resin was successfully prepared by solution polymerisation. The hydrophobicity of the film is improved.

Details

Pigment & Resin Technology, vol. 43 no. 5
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 October 2021

Walid S. Abdel-Wakil, Tarek M. Salama, Elbadawy A. Kamoun, Farag Abd El Hai Ahmed, Wassem Hassan, Yaser A. El-Badry and Alaa Fahmy

This paper aims to synthesize new terpolymers by the emulsion polymerization technique composed of acrylamide-based polyurethane monomers (TPM and MPM) with different vinyl…

Abstract

Purpose

This paper aims to synthesize new terpolymers by the emulsion polymerization technique composed of acrylamide-based polyurethane monomers (TPM and MPM) with different vinyl acetate copolymer systems, such as vinyl acetate/butyl acrylate (VAc/BA), vinyl acetate/ethylhexyl acrylate (VAc/2-EHA) and vinyl acetate/vinyl ester of versatic acid (VAc/VEOVA 10) systems. The performance of the prepared terpolymers as binders in emulsion coatings and textile industries was investigated and compared with the analogous commercial ones.

Design/methodology/approach

New waterborne polyurethane-vinyl ester-vinyl acetate terpolymers with high solid content and nano-scale emulsions have been successfully synthesized in two steps. The polyurethane oligomers were prepared by the prepolymer method as the first step. The second step involved polymerization with different vinyl monomers. The synthesized terpolymers were characterized using FTIR, scanning electron microscope, thermogravimetric analysis, minimum film forming temperature and particle size analyzer methods.

Findings

The synthesized emulsion terpolymers have shown small particle sizes averaged of 70 nm and a narrow distribution range, along with good mechanical, thermal and chemical stabilities. The surface coating layers of the terpolymers also have some important in terms of smoothness, clarity and binding ability in water-based coating for up to 4425 scrub cycles at 30 GU. Further, a high potential application textile printing was achieved at high solid content of 47–50%.

Originality/value

The effects of different isocyanates and vinyl monomers on the properties of obtained emulsion coatings have been studied. The improvement consequences of the coating evaluation of the waterborne binders for emulsion paints have been described. The properties of polyester/cotton fabric print pigment printing of textiles appear to be most promising enhancements by using the prepared nanocomposites of PU-co-vinyl acetate-co-vinyl ester as waterborne binders. So that the prepared emulsions have the potential to replace solvent-based coatings as waterborne binders for both emulsion coating and textile printing applications.

Details

Pigment & Resin Technology, vol. 52 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 26 April 2011

Amit S. Jariwala, Fei Ding, Aparna Boddapati, Victor Breedveld, Martha A. Grover, Clifford L. Henderson and David W. Rosen

The purpose of this paper is to present a model that can be used to simulate the photopolymerization process in micro‐stereolithography (SL) in order to predict the shape of the…

1372

Abstract

Purpose

The purpose of this paper is to present a model that can be used to simulate the photopolymerization process in micro‐stereolithography (SL) in order to predict the shape of the cured parts. SL is an additive manufacturing process in which liquid photopolymer resin is cross‐linked and converted to solid with a UV laser light source. Traditional models of SL processes do not consider the complex chemical reactions and species transport occurring during photopolymerization and, hence, are incapable of accurately predicting resin curing behavior. The model presented in this paper attempts to bridge this knowledge gap.

Design/methodology/approach

The chemical reactions involved in the photopolymerization of acrylate‐based monomers were modeled as ordinary differential equations (ODE). This model incorporated the effect of oxygen inhibition and diffusion on the polymerization reaction. The model was simulated in COMSOL and verified with experiments conducted on a mask‐based micro‐SL system. Parametric studies were conducted to investigate the possibilities to improve the accuracy of the model for predicting the edge curvature.

Findings

The proposed model predicts well the effect of oxygen inhibition and diffusion on photopolymerization, and the model accurately predicts the cured part height when compared to experiments conducted on a mask‐based SL system. The simulated results also show the characteristic edge curvature as seen in experiments.

Research limitations/implications

A triacrylate monomer was used in the experiments conducted, so results may be limited to acrylate monomers. Shrinkage was not considered when comparing cured part shapes to those predicted using COMSOL.

Originality/value

This paper presents a unique and a pioneering approach towards modeling of the photopolymerization reaction in micro‐SL process. This research furthers the development of patent pending film micro‐SL process which can be used for fabrication of custom micro‐optical components.

Details

Rapid Prototyping Journal, vol. 17 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 4 December 2019

Xinyue Liang, Hui Qiao, Guilong Xu, Yanchong Zhang, Yun Liang and Jian Hu

The flammability of poly-acrylate (PA) resin is a major disadvantage in applications that require flame resistance. Many studies, including the authors’ previous study, have…

Abstract

Purpose

The flammability of poly-acrylate (PA) resin is a major disadvantage in applications that require flame resistance. Many studies, including the authors’ previous study, have proved that covalent-incorporated phosphorous-containing (P-containing) monomer onto the PA resin can exhibit better flame resistance than that by an additive approach. However, other properties such as thermal stability, coating properties are still deteriorated. To further improve the flame-retardancy and other comprehensive properties of the P-containing PA resin, in this study, melamine formaldehyde(MF) resin was used not only as a curing agent to enhance the coating properties of the PA resin, but also as a nitrogen-containing (N-containing) resin to form a P-N synergistic effect and therefore further improve its flame retardancy.

Design/methodology/approach

Epoxy resin phosphorous acid-modified (EPPA-modified) PA (EPPA-PA) resin was first prepared and then using MF resin as curing agent. The flame retardancy of the cured resin was tested by the limiting oxygen index (LOI) and UL 94 methods. The thermal stability of the cured resin was studied by TGA. The coating technology such as adhesion property, pencil hardness and anti-solvent properties were characterized according to methods of International Standards ISO2409-1992, ISO 15184-1998 and ISO-15184-2012, respectively. The micro-char morphology of the char residue was observed by SEM.

Findings

The results showed that by using MF resin as curing agent has provided the PA resin with excellent coating properties and thermal stability, but also gave a P-N synergistic effect which has greatly enhanced the flame retardancy of the cured resin. The cured resin system containing only 1.7 Wt.% P content and 5.3 Wt.% N content can reach a LOI of 26.9 per cent and pass the V-0 rating in the UL-94 test.

Research limitations/implications

This resin system releases formaldehyde due to the MF resin.

Practical implications

It is expected that the large-scale production of this EPPA-PA resin cured by MF resin system will enable practical industrial applications.

Originality/value

This method for the synthesis of a P- and N-containing PA resin system is newfangled.

Details

Pigment & Resin Technology, vol. 49 no. 1
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 10 of 408