Search results

1 – 10 of 146
Article
Publication date: 26 April 2024

Vasudha Hegde, Narendra Chaulagain and Hom Bahadur Tamang

Identification of the direction of the sound source is very important for human–machine interfacing in the applications such as target detection on military applications and…

Abstract

Purpose

Identification of the direction of the sound source is very important for human–machine interfacing in the applications such as target detection on military applications and wildlife conservation. Considering its vast applications, this study aims to design, simulate, fabricate and test a bidirectional acoustic sensor having two cantilever structures coated with piezoresistive material for sensing has been designed, simulated, fabricated and tested.

Design/methodology/approach

The structure is a piezoresistive acoustic pressure sensor, which consists of two Kapton diaphragms with four piezoresistors arranged in Wheatstone bridge arrangement. The applied acoustic pressure causes diaphragm deflection and stress in diaphragm hinge, which is sensed by the piezoresistors positioned on the diaphragm. The piezoresistive material such as carbon or graphene is deposited at maximum stress area. Furthermore, the Wheatstone bridge arrangement has been formed to sense the change in resistance resulting into imbalanced bridge and two cantilever structures add directional properties to the acoustic sensor. The structure is designed, fabricated and tested and the dimensions of the structure are chosen to enable ease of fabrication without clean room facilities. This structure is tested with static and dynamic calibration for variation in resistance leading to bridge output voltage variation and directional properties.

Findings

This paper provides the experimental results that indicate sensor output variation in terms of a Wheatstone bridge output voltage from 0.45 V to 1.618 V for a variation in pressure from 0.59 mbar to 100 mbar. The device is also tested for directionality using vibration source and was found to respond as per the design.

Research limitations/implications

The fabricated devices could not be tested for practical acoustic sources due to lack of facilities. They have been tested for a vibration source in place of acoustic source.

Practical implications

The piezoresistive bidirectional sensor can be used for detection of direction of the sound source.

Social implications

In defense applications, it is important to detect the direction of the acoustic signal. This sensor is suited for such applications.

Originality/value

The present paper discusses a novel yet simple design of a cantilever beam-based bidirectional acoustic pressure sensor. This sensor fabrication does not require sophisticated cleanroom for fabrication and characterization facility for testing. The fabricated device has good repeatability and is able to detect the direction of the acoustic source in external environment.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 15 February 2024

Saliq Shamim Shah, Daljeet Singh, Jaswinder Singh Saini and Naveen Garg

This paper aims to study the design and characterization of a 3D printed tetrakaidecahedron cell-based acoustic metamaterial. At present, the mitigation of low-frequency noise…

Abstract

Purpose

This paper aims to study the design and characterization of a 3D printed tetrakaidecahedron cell-based acoustic metamaterial. At present, the mitigation of low-frequency noise involves the utilization of spatially demanding materials for the absorption of sound. These materials lack the ability for targeted frequency control adjustments. Hence, there is a requirement for an approach that can effectively manage low-frequency noise using lightweight and durable materials.

Design/methodology/approach

The CAD model was created in SolidWorks and was manufactured using the Digital Light Processing (DLP) 3D printing technique. Experimental study and numerical simulations examined the metamaterial’s acoustic absorption. An impedance tube with two microphones was used to determine the absorption coefficient of the metamaterial. The simulations were run in a thermoviscous module.

Findings

The testing of acoustic samples highlighted the effects of geometric parameters on acoustic performance. Increment of the strut length by 0.4 mm led to a shift in response to a lower frequency by 500 Hz. Peak absorption rose from 0.461 to 0.690 as the strut diameter was increased from 0.6 to 1.0 mm. Increasing the number of cells from 8 to 20 increased the absorption coefficient and lowered the response frequency.

Originality/value

DLP 3D printing technique was used to successfully manufacture tetrakaidecahedron-based acoustic metamaterial samples. A novel study on the effects of geometric parameters of tetrakaidecahedron cell-based acoustic metamaterial on the acoustic absorption coefficient was conducted, which seemed to be missing in the literature.

Article
Publication date: 6 October 2023

Omotayo Farai, Nicole Metje, Carl Anthony, Ali Sadeghioon and David Chapman

Wireless sensor networks (WSN), as a solution for buried water pipe monitoring, face a new set of challenges compared to traditional application for above-ground infrastructure…

Abstract

Purpose

Wireless sensor networks (WSN), as a solution for buried water pipe monitoring, face a new set of challenges compared to traditional application for above-ground infrastructure monitoring. One of the main challenges for underground WSN deployment is the limited range (less than 3 m) at which reliable wireless underground communication can be achieved using radio signal propagation through the soil. To overcome this challenge, the purpose of this paper is to investigate a new approach for wireless underground communication using acoustic signal propagation along a buried water pipe.

Design/methodology/approach

An acoustic communication system was developed based on the requirements of low cost (tens of pounds at most), low power supply capacity (in the order of 1 W-h) and miniature (centimetre scale) size for a wireless communication node. The developed system was further tested along a buried steel pipe in poorly graded SAND and a buried medium density polyethylene (MDPE) pipe in well graded SAND.

Findings

With predicted acoustic attenuation of 1.3 dB/m and 2.1 dB/m along the buried steel and MDPE pipes, respectively, reliable acoustic communication is possible up to 17 m for the buried steel pipe and 11 m for the buried MDPE pipe.

Research limitations/implications

Although an important first step, more research is needed to validate the acoustic communication system along a wider water distribution pipe network.

Originality/value

This paper shows the possibility of achieving reliable wireless underground communication along a buried water pipe (especially non-metallic material ones) using low-frequency acoustic propagation along the pipe wall.

Details

International Journal of Pervasive Computing and Communications, vol. 20 no. 2
Type: Research Article
ISSN: 1742-7371

Keywords

Article
Publication date: 15 April 2024

Zhaozhao Tang, Wenyan Wu, Po Yang, Jingting Luo, Chen Fu, Jing-Cheng Han, Yang Zhou, Linlin Wang, Yingju Wu and Yuefei Huang

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However…

Abstract

Purpose

Surface acoustic wave (SAW) sensors have attracted great attention worldwide for a variety of applications in measuring physical, chemical and biological parameters. However, stability has been one of the key issues which have limited their effective commercial applications. To fully understand this challenge of operation stability, this paper aims to systematically review mechanisms, stability issues and future challenges of SAW sensors for various applications.

Design/methodology/approach

This review paper starts with different types of SAWs, advantages and disadvantages of different types of SAW sensors and then the stability issues of SAW sensors. Subsequently, recent efforts made by researchers for improving working stability of SAW sensors are reviewed. Finally, it discusses the existing challenges and future prospects of SAW sensors in the rapidly growing Internet of Things-enabled application market.

Findings

A large number of scientific articles related to SAW technologies were found, and a number of opportunities for future researchers were identified. Over the past 20 years, SAW-related research has gained a growing interest of researchers. SAW sensors have attracted more and more researchers worldwide over the years, but the research topics of SAW sensor stability only own an extremely poor percentage in the total researc topics of SAWs or SAW sensors.

Originality/value

Although SAW sensors have been attracting researchers worldwide for decades, researchers mainly focused on the new materials and design strategies for SAW sensors to achieve good sensitivity and selectivity, and little work can be found on the stability issues of SAW sensors, which are so important for SAW sensor industries and one of the key factors to be mature products. Therefore, this paper systematically reviewed the SAW sensors from their fundamental mechanisms to stability issues and indicated their future challenges for various applications.

Details

Sensor Review, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 5 February 2024

Kiri Mealings and Joerg M. Buchholz

The purpose of this paper is to systematically map research on the effect of classroom acoustics and noise on high school students’ listening, learning and well-being, as well as…

Abstract

Purpose

The purpose of this paper is to systematically map research on the effect of classroom acoustics and noise on high school students’ listening, learning and well-being, as well as identify knowledge gaps to inform future research.

Design/methodology/approach

This scoping review followed the PRISMA-ScR protocol. A comprehensive search of four online databases (ERIC, PubMed, Scopus and Web of Science) was conducted. Peer-reviewed papers were included if they conducted a study on the effect of classroom acoustics or noise on students’ listening, learning or well-being; had a clear definition of the noise level measurement; were conducted with high school students; and had the full text in English available.

Findings

In total, 14 papers met the criteria to be included in the review. The majority of studies assessed the impact of noise on students’ listening, learning or well-being. Overall, the results showed that higher noise levels have a negative effect on students’ listening, learning and well-being. Effects were even more pronounced for students who were non-native speakers or those with special educational needs such as hearing loss. Therefore, it would be beneficial to limit unnecessary noise in the classroom as much as possible through acoustic insulation, acoustic treatment and classroom management strategies.

Originality/value

This paper is the first review paper to synthesize previous research on the effect of classroom acoustics and noise on high school students’ listening, learning and well-being. It provides an analysis of the limitations of existing literature and proposes future research to help fill in these gaps.

Details

Facilities , vol. 42 no. 5/6
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 21 November 2022

Aissa Boucedra and Madani Bederina

This paper aims to characterize and develop a new ecological lightweight concrete reinforced by addition of palm plant fibers (from vegetal waste) to be used in the thermal and…

Abstract

Purpose

This paper aims to characterize and develop a new ecological lightweight concrete reinforced by addition of palm plant fibers (from vegetal waste) to be used in the thermal and acoustical insulation of local constructions. The date palm plant fibers are characterized by their low sensitivity to chemical reactions, low cost and large availability in local regions. Therefore, the newly obtained lightweight concrete may suggest a great interest, as it seems to be able to achieve good solutions for local construction problems, technically, economically and ecologically.

Design/methodology/approach

The experimental program focused on developing the composition of palm-fiber-reinforced concrete, by studying the effect of the length of the fibers (10, 20, 30 and 40 mm) and their mass percentage (0.5%, 1%, 1.5% and 2%), on the mechanical and acoustical properties of the composite. The main measured parameters were the compressive strength and flexural strength, sound absorption coefficient, noise reduction coefficient (NRC), etc. These tests were also borne out by the measure of density and water absorption, as well as microstructure analyses. To fully appreciate the behavior of the material, visualizations under optical microscope and scanning electron microscope analyses were carried out.

Findings

The addition of plant fibers to concrete made it possible to formulate a new lightweight concrete having interesting properties. The addition of date palm fibers significantly decreased the density of the concrete and consequently reduced its mechanical strength, particularly in compression. Acceptable compressive strength values were possible, according to the fibers content, while better values have been obtained in flexion. On the other hand, good acoustical performances were obtained: a considerable increase in the sound absorption coefficient and the NRC was recorded, according to the content and length of fibers. Even the rheological behavior has been improved with the addition of fibers, but with short fibers only.

Originality/value

Over the recent decades, many studies have attempted to search for more sustainable and environmentally friendly building materials. Therefore, this work aims to study the possibility of using waste from date palm trees as fibers in concrete instead of the conventionally used fibers. Although many researches have already been conducted on the effect of palm plant fibers on the mechanical/physical properties of concrete, no information is available neither on the formulation of this type of concrete nor on its acoustical properties. Indeed, due to the scarcity of raw materials and the excessive consumption of energy, the trend of plant fibers as resources, which are natural and renewable, is very attractive. It is therefore a major recycling project of waste and recovery of local materials.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 April 2024

Fei Shang, Bo Sun and Dandan Cai

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal…

Abstract

Purpose

The purpose of this study is to investigate the application of non-destructive testing methods in measuring bearing oil film thickness to ensure that bearings are in a normal lubrication state. The oil film thickness is a crucial parameter reflecting the lubrication status of bearings, directly influencing the operational state of bearing transmission systems. However, it is challenging to accurately measure the oil film thickness under traditional disassembly conditions due to factors such as bearing structure and working conditions. Therefore, there is an urgent need for a nondestructive testing method to measure the oil film thickness and its status.

Design/methodology/approach

This paper introduces methods for optically, electrically and acoustically measuring the oil film thickness and status of bearings. It discusses the adaptability and measurement accuracy of different bearing oil film measurement methods and the impact of varying measurement conditions on accuracy. In addition, it compares the application scenarios of other techniques and the influence of the environment on detection results.

Findings

Ultrasonic measurement stands out due to its widespread adaptability, making it suitable for oil film thickness detection in various states and monitoring continuous changes in oil film thickness. Different methods can be selected depending on the measurement environment to compensate for measurement accuracy and enhance detection effectiveness.

Originality/value

This paper reviews the basic principles and latest applications of optical, electrical and acoustic measurement of oil film thickness and status. It analyzes applicable measurement methods for oil film under different conditions. It discusses the future trends of detection methods, providing possible solutions for bearing oil film thickness detection in complex engineering environments.

Details

Industrial Lubrication and Tribology, vol. 76 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Open Access
Article
Publication date: 2 January 2024

David J. Thompson, Dong Zhao, Evangelos Ntotsios, Giacomo Squicciarini, Ester Cierco and Erwin Jansen

The vibration of the rails is a significant source of railway rolling noise, often forming the dominant component of noise in the important frequency region between 400 and…

Abstract

Purpose

The vibration of the rails is a significant source of railway rolling noise, often forming the dominant component of noise in the important frequency region between 400 and 2000 Hz. The purpose of the paper is to investigate the influence of the ground profile and the presence of the train body on the sound radiation from the rail.

Design/methodology/approach

Two-dimensional boundary element calculations are used, in which the rail vibration is the source. The ground profile and various different shapes of train body are introduced in the model, and results are observed in terms of sound power and sound pressure. Comparisons are also made with vibro-acoustic measurements performed with and without a train present.

Findings

The sound radiated by the rail in the absence of the train body is strongly attenuated by shielding due to the ballast shoulder. When the train body is present, the sound from the vertical rail motion is reflected back down toward the track where it is partly absorbed by the ballast. Nevertheless, the sound pressure at the trackside is increased by typically 0–5 dB. For the lateral vibration of the rail, the effects are much smaller. Once the sound power is known, the sound pressure with the train present can be approximated reasonably well with simple line source directivities.

Originality/value

Numerical models used to predict the sound radiation from railway rails have generally neglected the influence of the ground profile and reflections from the underside of the train body on the sound power and directivity of the rail. These effects are studied in a systematic way including comparisons with measurements.

Details

Railway Sciences, vol. 3 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Article
Publication date: 13 June 2023

Henk W. Brink, Stefan C.M. Lechner, Marcel G.L.C. Loomans, Mark P. Mobach and Helianthe S.M. Kort

This study aims to qualitatively examine the relationship between the indoor environmental quality (IEQ), lecturers’ and students’ perceived internal responses and academic…

Abstract

Purpose

This study aims to qualitatively examine the relationship between the indoor environmental quality (IEQ), lecturers’ and students’ perceived internal responses and academic performance.

Design/methodology/approach

To capture user experiences with the IEQ in classrooms, semi-structured interviews with 11 lecturers and three focus group discussions with 24 students were conducted, transcribed, coded and analyzed using direct content analysis.

Findings

The findings show that lecturers and students experience poor thermal, lighting, acoustic and indoor air quality (IAQ) conditions that may influence their ability to teach and learn. Maintaining acceptable thermal and IAQ conditions was difficult for lecturers, as opening windows or doors caused noise disturbances. In uncomfortable conditions, lecturers may decide to give a break earlier or shorten a lecture. When students experienced discomfort, it may affect their ability to concentrate, their emotional status and their quality of learning.

Research limitations/implications

The findings originate from a relatively small sample, which might have limited the number and variety of identified associations between environment and users.

Practical implications

Maintaining acceptable air and thermal conditions will mitigate the need to open windows and doors. Keeping doors and windows closed will prevent noise disturbances and related distractions. This will support the quality of learning in classrooms. This study reveals the end users’ perspectives and preferences, which can inspire designers of new school buildings in higher education.

Originality/value

This study emphasizes the importance of creating and maintaining optimal IEQ conditions to support the quality of teaching and learning. These conditions are particularly relevant when classroom occupancy rates are high or outdoor conditions are unfavourable.

Details

Facilities , vol. 42 no. 3/4
Type: Research Article
ISSN: 0263-2772

Keywords

Article
Publication date: 1 November 2023

Deniz Artan, Isilay Tekce, Neziha Yilmaz and Esin Ergen

Occupant feedback is crucial for healthy, comfortable and productive offices. Existing facility management (FM) systems are limited in effective use of occupant feedback, as they…

Abstract

Purpose

Occupant feedback is crucial for healthy, comfortable and productive offices. Existing facility management (FM) systems are limited in effective use of occupant feedback, as they fail to collect the vital contextual information (e.g. related building element, space) associated with the feedback. The purpose of this study is to formalise the contextual information requirements for structured collection of occupant feedback for rapid diagnosis and resolution of problems and integrating occupant feedback with building information modelling (BIM) for making use of its visualisation and analysis capabilities, and eventually for effective use of occupant feedback in FM operations.

Design/methodology/approach

A mixed-methods approach was conducted in four steps: (1) identifying occupant feedback types (e.g. echo in meeting room) in office buildings, (2) examining the current practice in collecting and processing occupant feedback via use cases, (3) determining the contextual information requirements via expert interviews and (4) validation of the information requirements via a BIM-integrated prototype.

Findings

The findings present the contextual information requirements for 107 occupant feedback types grouped under thermal comfort, indoor air quality, acoustic comfort, visual comfort, building design and facility services.

Practical implications

Feedback-specific contextual information items enable structured data collection and help to avoid missing data and minimise the time lost in manual data entry and recursive interaction with the occupants during FM operations.

Originality/value

The contextual information requirements determined are expected to enhance occupant satisfaction and FM performance in office buildings by better use of the occupant feedback and integration into BIM-enabled FM and can be extended to other building types in future studies by using the proposed methodology.

Details

Facilities , vol. 42 no. 3/4
Type: Research Article
ISSN: 0263-2772

Keywords

1 – 10 of 146