Search results

1 – 10 of 131
Open Access
Article
Publication date: 28 December 2020

Qinjie Yang, Guozhe Shen, Chao Liu, Zheng Wang, Kai Zheng and Rencheng Zheng

Steer-by-wire (SBW) system mainly relies on sensors, controllers and motors to replace the traditionally mechanical transmission mechanism to realize steering functions. However…

1258

Abstract

Purpose

Steer-by-wire (SBW) system mainly relies on sensors, controllers and motors to replace the traditionally mechanical transmission mechanism to realize steering functions. However, the sensors in the SBW system are particularly vulnerable to external influences, which can cause systemic faults, leading to poor steering performance and even system instability. Therefore, this paper aims to adopt a fault-tolerant control method to solve the safety problem of the SBW system caused by sensors failure.

Design/methodology/approach

This paper proposes an active fault-tolerant control framework to deal with sensors failure in the SBW system by hierarchically introducing fault observer, fault estimator, fault reconstructor. Firstly, the fault observer is used to obtain the observation output of the SBW system and then obtain the residual between the observation output and the SBW system output. And then judge whether the SBW system fails according to the residual. Secondly, dependent on the residual obtained by the fault observer, a fault estimator is designed using bounded real lemma and regional pole configuration to estimate the amplitude and time-varying characteristics of the faulty sensor. Eventually, a fault reconstructor is designed based on the estimation value of sensors fault obtained by the fault estimator and SBW system output to tolerate the faulty sensor.

Findings

The numerical analysis shows that the fault observer can be rapidly activated to detect the fault while the sensors fault occurs. Moreover, the estimation accuracy of the fault estimator can reach to 98%, and the fault reconstructor can make the faulty SBW system to retain the steering characteristics, comparing to those of the fault-free SBW system. In addition, it was verified for the feasibility and effectiveness of the proposed control framework.

Research limitations/implications

As the SBW fault diagnosis and fault-tolerant control in this paper only carry out numerical simulation research on sensors faults in matrix and laboratory/Simulink, the subsequent hardware in the loop test is needed for further verification.

Originality/value

Aiming at the SBW system with parameter perturbation and sensors failure, this paper proposes an active fault-tolerant control framework, which integrates fault observer, fault estimator and fault reconstructor so that the steering performance of SBW system with sensors faults is basically consistent with that of the fault-free SBW system.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 1
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 29 March 2021

Hamad Al Jassmi, Mahmoud Al Ahmad and Soha Ahmed

The first step toward developing an automated construction workers performance monitoring system is to initially establish a complete and competent activity recognition solution…

1682

Abstract

Purpose

The first step toward developing an automated construction workers performance monitoring system is to initially establish a complete and competent activity recognition solution, which is still lacking. This study aims to propose a novel approach of using labor physiological data collected through wearable sensors as means of remote and automatic activity recognition.

Design/methodology/approach

A pilot study is conducted against three pre-fabrication stone construction workers throughout three full working shifts to test the ability of automatically recognizing the type of activities they perform in-site through their lively measured physiological signals (i.e. blood volume pulse, respiration rate, heart rate, galvanic skin response and skin temperature). The physiological data are broadcasted from wearable sensors to a tablet application developed for this particular purpose, and are therefore used to train and assess the performance of various machine-learning classifiers.

Findings

A promising result of up to 88% accuracy level for activity recognition was achieved by using an artificial neural network classifier. Nonetheless, special care needs to be taken for some activities that evoke similar physiological patterns. It is expected that blending this method with other currently developed camera-based or kinetic-based methods would yield higher activity recognition accuracy levels.

Originality/value

The proposed method complements previously proposed labor tracking methods that focused on monitoring labor trajectories and postures, by using additional rich source of information from labors physiology, for real-time and remote activity recognition. Ultimately, this paves for an automated and comprehensive solution with which construction managers could monitor, control and collect rich real-time data about workers performance remotely.

Details

Construction Innovation , vol. 21 no. 4
Type: Research Article
ISSN: 1471-4175

Keywords

Open Access
Article
Publication date: 13 October 2022

Conglin Li, Jiawei Lu, Jiankun Lai, Junbo Yao and Gang Xiao

Ride comfort is one of the important factors affecting passenger health. Therefore, the elevator industry usually uses the International Organization for Standardization (ISO…

1358

Abstract

Purpose

Ride comfort is one of the important factors affecting passenger health. Therefore, the elevator industry usually uses the International Organization for Standardization (ISO) 18738-1 standard to evaluate elevator ride quality and optimize elevator design. However, this method has certain limitations in its evaluation of comfort due to the problem of boundary division. The ISO 2631-4 standard is used as a general method of comfort evaluation in the current rail transit system, but it has not been applied in the elevator industry. In order to explore the difference and connection between the two standards, the author aims to conduct a detailed analysis on this.

Design/methodology/approach

Based on the elevator internet, a large amount of measured data of normal and abnormal vibration of elevator car were collected and analyzed and preprocessed; based on ISO 18738-1:2012 standard and ISO 2631-4:2001 standard, the differences of ride comfort assessment methods in the two standards were analyzed, and the ride comfort assessment study of elevator under normal and abnormal vibration conditions was carried out.

Findings

The experimental results show that the comfort assessment results of ISO 2631-4:2001 standard and ISO18738-1:2012 standard are consistent under two vibration conditions. At the same time, ISO 2631-4:2001 can not only provide a more accurate quantitative description of comfort, but also roughly determine the comfort interval of each vibration, which can provide theoretical reference for elevator vibration classification and car comfort design.

Originality/value

The authors designed an Internet of Things (IOT)-based elevator vibration signal acquisition method to address the shortcomings of the previous elevator ride comfort assessment methods, which can realize the dynamic assessment of elevator ride comfort; by comparing the assessment results of elevator ride comfort under normal vibration and abnormal vibration, the feasibility of ISO 2631-4:2001 for elevator ride comfort assessment was fully verified. In addition, the experimental results also give the influence of abnormal vibration on elevator riding comfort under the stages of start-stop, uniform speed, acceleration and deceleration, which can provide theoretical support for elevator vibration suppression and comfort transformation.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 19 January 2024

Fuzhao Chen, Zhilei Chen, Qian Chen, Tianyang Gao, Mingyan Dai, Xiang Zhang and Lin Sun

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production…

Abstract

Purpose

The electromechanical brake system is leading the latest development trend in railway braking technology. The tolerance stack-up generated during the assembly and production process catalyzes the slight geometric dimensioning and tolerancing between the motor stator and rotor inside the electromechanical cylinder. The tolerance leads to imprecise brake control, so it is necessary to diagnose the fault of the motor in the fully assembled electromechanical brake system. This paper aims to present improved variational mode decomposition (VMD) algorithm, which endeavors to elucidate and push the boundaries of mechanical synchronicity problems within the realm of the electromechanical brake system.

Design/methodology/approach

The VMD algorithm plays a pivotal role in the preliminary phase, employing mode decomposition techniques to decompose the motor speed signals. Afterward, the error energy algorithm precision is utilized to extract abnormal features, leveraging the practical intrinsic mode functions, eliminating extraneous noise and enhancing the signal’s fidelity. This refined signal then becomes the basis for fault analysis. In the analytical step, the cepstrum is employed to calculate the formant and envelope of the reconstructed signal. By scrutinizing the formant and envelope, the fault point within the electromechanical brake system is precisely identified, contributing to a sophisticated and accurate fault diagnosis.

Findings

This paper innovatively uses the VMD algorithm for the modal decomposition of electromechanical brake (EMB) motor speed signals and combines it with the error energy algorithm to achieve abnormal feature extraction. The signal is reconstructed according to the effective intrinsic mode functions (IMFS) component of removing noise, and the formant and envelope are calculated by cepstrum to locate the fault point. Experiments show that the empirical mode decomposition (EMD) algorithm can effectively decompose the original speed signal. After feature extraction, signal enhancement and fault identification, the motor mechanical fault point can be accurately located. This fault diagnosis method is an effective fault diagnosis algorithm suitable for EMB systems.

Originality/value

By using this improved VMD algorithm, the electromechanical brake system can precisely identify the rotational anomaly of the motor. This method can offer an online diagnosis analysis function during operation and contribute to an automated factory inspection strategy while parts are assembled. Compared with the conventional motor diagnosis method, this improved VMD algorithm can eliminate the need for additional acceleration sensors and save hardware costs. Moreover, the accumulation of online detection functions helps improve the reliability of train electromechanical braking systems.

Open Access
Article
Publication date: 17 May 2022

Chongyi Chang, Yuanwu Cai, Bo Chen, Qiuze Li and Pengfei Lin

In service, the periodic clashes of wheel flat against the rail result in large wheel/rail impact force and high-frequency vibration, leading to severe damage on the wheelset…

Abstract

Purpose

In service, the periodic clashes of wheel flat against the rail result in large wheel/rail impact force and high-frequency vibration, leading to severe damage on the wheelset, rail and track structure. This study aims to analyze characteristics and dynamic impact law of wheel and rail caused by wheel flat of high-speed trains.

Design/methodology/approach

A full-scale high-speed wheel/rail interface test rig was used for the test of the dynamic impact of wheel/rail caused by wheel flat of high-speed train. With wheel flats of different lengths, widths and depths manually set around the rolling circle of the wheel tread, and wheel/rail dynamic impact tests to the flats in the speed range of 0–400 km/h on the rig were conducted.

Findings

As the speed goes up, the flat induced the maximum of the wheel/rail dynamic impact force increases rapidly before it reaches its limit at the speed of around 35 km/h. It then goes down gradually as the speed continues to grow. The impact of flat wheel on rail leads to 100–500 Hz middle-frequency vibration, and around 2,000 Hz and 6,000 Hz high-frequency vibration. In case of any wheel flat found during operation, the train speed shall be controlled according to the status of the flat and avoid the running speed of 20 km/h–80 km/h as much as possible.

Originality/value

The research can provide a new method to obtain the dynamic impact of wheel/rail caused by wheel flat by a full-scale high-speed wheel/rail interface test rig. The relations among the flat size, the running speed and the dynamic impact are hopefully of reference to the building of speed limits for HSR wheel flat of different degrees.

Details

Railway Sciences, vol. 1 no. 1
Type: Research Article
ISSN: 2755-0907

Keywords

Open Access
Article
Publication date: 21 June 2023

Xiaoyu Chen, Yonggang Leng, Fei Sun, Xukun Su, Shuailing Sun and Junjie Xu

The existing Nonlinear Dynamic Vibration Absorbers (NLDVAs) have the disadvantages of complex structure, high cost, high installation space requirements and difficulty in…

Abstract

Purpose

The existing Nonlinear Dynamic Vibration Absorbers (NLDVAs) have the disadvantages of complex structure, high cost, high installation space requirements and difficulty in miniaturization. And most of the NLDVAs have not been applied to reality. To address the above issues, a novel Triple-magnet Magnetic Dynamic Vibration Absorber (TMDVA) with tunable stiffness, only composed of triple cylindrical permanent magnets and an acrylic tube, is designed, modeled and tested in this paper.

Design/methodology/approach

(1) A novel TMDVA is designed. (2) Theoretical and experimental methods. (3) Equivalent dynamics model.

Findings

It is found that adjusting the magnet distance can effectively optimize the vibration reduction effect of the TMDVA under different resonance conditions. When the resonance frequency of the cantilever changes, the magnet distance of the TMDVA with a high vibration reduction effect shows an approximately linear relationship with the resonance frequency of the cantilever which is convenient for the design optimization of the TMDVA.

Originality/value

Both the simulation and experimental results prove that the TMDVA can effectively reduce the vibration of the cantilever even if the resonance frequency of the cantilever changes, which shows the strong robustness of the TMDVA. Given all that, the TMDVA has potential application value in the passive vibration reduction of engineering structures.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 4 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 4 April 2024

Yanmin Zhou, Zheng Yan, Ye Yang, Zhipeng Wang, Ping Lu, Philip F. Yuan and Bin He

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing…

Abstract

Purpose

Vision, audition, olfactory, tactile and taste are five important senses that human uses to interact with the real world. As facing more and more complex environments, a sensing system is essential for intelligent robots with various types of sensors. To mimic human-like abilities, sensors similar to human perception capabilities are indispensable. However, most research only concentrated on analyzing literature on single-modal sensors and their robotics application.

Design/methodology/approach

This study presents a systematic review of five bioinspired senses, especially considering a brief introduction of multimodal sensing applications and predicting current trends and future directions of this field, which may have continuous enlightenments.

Findings

This review shows that bioinspired sensors can enable robots to better understand the environment, and multiple sensor combinations can support the robot’s ability to behave intelligently.

Originality/value

The review starts with a brief survey of the biological sensing mechanisms of the five senses, which are followed by their bioinspired electronic counterparts. Their applications in the robots are then reviewed as another emphasis, covering the main application scopes of localization and navigation, objection identification, dexterous manipulation, compliant interaction and so on. Finally, the trends, difficulties and challenges of this research were discussed to help guide future research on intelligent robot sensors.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Open Access
Article
Publication date: 3 June 2021

Xiaohua Zhao, Xuewei Li, Yufei Chen, Haijian Li and Yang Ding

Heavy fog results in low visibility, which increases the probability and severity of traffic crashes, and fog warning system is conducive to the reduction of crashes by conveying…

Abstract

Purpose

Heavy fog results in low visibility, which increases the probability and severity of traffic crashes, and fog warning system is conducive to the reduction of crashes by conveying warning messages to drivers. This paper aims at exploring the effects of dynamic message sign (DMS) of fog warning system on driver performance.

Design/methodology/approach

First, a testing platform was established based on driving simulator and driver performance data under DMS were collected. The experiment route was consisted of three different zones (i.e. warning zone, transition zone and heavy fog zone), and mean speed, mean acceleration, mean jerk in the whole zone, ending speed in the warning zone and transition zone, maximum deceleration rate and mean speed reduction proportion in the transition zone and heavy fog zone were selected. Next, the one-way analysis of variance was applied to test the significant difference between the metrics. Besides, drivers’ subjective perception was also considered.

Findings

The results indicated that DMS is beneficial to reduce speed before drivers enter the heavy fog zone. Besides, when drivers enter a heavy fog zone, DMS can reduce the tension of drivers and make drivers operate more smoothly.

Originality/value

This paper provides a comprehensive approach for evaluating the effectiveness of the warning system in adverse conditions based on the driving simulation test platform. The method can be extended to the evaluation of vehicle-to-infrastructure technology in other special scenarios.

Details

Journal of Intelligent and Connected Vehicles, vol. 4 no. 2
Type: Research Article
ISSN: 2399-9802

Keywords

Open Access
Article
Publication date: 1 July 2021

Xiaochun Guan, Sheng Lou, Han Li and Tinglong Tang

Deployment of deep neural networks on embedded devices is becoming increasingly popular because it can reduce latency and energy consumption for data communication. This paper…

2638

Abstract

Purpose

Deployment of deep neural networks on embedded devices is becoming increasingly popular because it can reduce latency and energy consumption for data communication. This paper aims to give out a method for deployment the deep neural networks on a quad-rotor aircraft for further expanding its application scope.

Design/methodology/approach

In this paper, a design scheme is proposed to implement the flight mission of the quad-rotor aircraft based on multi-sensor fusion. It integrates attitude acquisition module, global positioning system position acquisition module, optical flow sensor, ultrasonic sensor and Bluetooth communication module, etc. A 32-bit microcontroller is adopted as the main controller for the quad-rotor aircraft. To make the quad-rotor aircraft be more intelligent, the study also proposes a method to deploy the pre-trained deep neural networks model on the microcontroller based on the software packages of the RT-Thread internet of things operating system.

Findings

This design provides a simple and efficient design scheme to further integrate artificial intelligence (AI) algorithm for the control system design of quad-rotor aircraft.

Originality/value

This method provides an application example and a design reference for the implementation of AI algorithms on unmanned aerial vehicle or terminal robots.

Details

Industrial Robot: the international journal of robotics research and application, vol. 48 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Open Access
Article
Publication date: 17 February 2023

Luca Pugi, Giulio Rosano, Riccardo Viviani, Leonardo Cabrucci and Luca Bocciolini

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous…

Abstract

Purpose

The purpose of this work is to optimize the monitoring of vibrations on dynamometric test rigs for railway brakes. This is a quite demanding application considering the continuous increase of performances of high-speed trains that involve higher testing specifications for brake pads and disks.

Design/methodology/approach

In this work, authors propose a mixed approach in which relatively simple finite element models are used to support the optimization of a diagnostic system that is used to monitor vibration levels and rotor-dynamical behavior of the machine. The model is calibrated with experimental data recorded on the same rig that must be identified and monitored. The whole process is optimized to not interfere with normal operations of the rig, using common inertial sensor and tools and are available as standard instrumentation for this kind of applications. So at the end all the calibration activities can be performed normally without interrupting the activities of the rig introducing additional costs due to system unavailability.

Findings

Proposed approach was able to identify in a very simple and fast way the vibrational behavior of the investigated rig, also giving precious information concerning the anisotropic behavior of supports and their damping. All these data are quite difficult to be found in technical literature because they are quite sensitive to assembly tolerances and to many other factors. Dynamometric test rigs are an important application widely diffused for both road and rail vehicles. Also proposed procedure can be easily extended and generalized to a wide value of machine with horizontal rotors.

Originality/value

Most of the studies in literature are referred to electrical motors or turbomachines operating with relatively slow transients and constant inertial properties. For investigated machines both these conditions are not verified, making the proposed application quite unusual and original with respect to current application. At the same time, there is a wide variety of special machines that are usually marginally covered by standard testing methodologies to which the proposed approach can be successfully extended.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 131