Search results

1 – 10 of over 19000
Article
Publication date: 23 July 2019

Yacong Wu, Jun Huang, Mingxu Yi and Chaopu Zhang

The purpose of this paper is to introduce the theoretical basis of N-order spectral spreading-compressing (SSC) frequency shift interference algorithm and expand it to active…

Abstract

Purpose

The purpose of this paper is to introduce the theoretical basis of N-order spectral spreading-compressing (SSC) frequency shift interference algorithm and expand it to active cancellation. An active cancellation simulation and verification system based on N-order SSC algorithm is established and carried out; simultaneously, the absorbing material coating stealth simulation of two kinds of thickness is carried out to compare the stealth effect with active cancellation system.

Design/methodology/approach

The active cancellation method based on N-order SSC algorithm is proposed based on theoretical formula derivation; the active cancellation simulation and verification system is established in MATLAB/Simulink. The full-size model is built by CATIA and meshed by hypermesh. The omnidirectional radar cross section (RCS) is calculated in cadFEKO, and the results are analyzed in postFEKO.

Findings

The simulations are implemented on a stealth fighter, and results show that after active cancellation, the peak of spectrum analyzer has reduced in all azimuths, the omnidirectional RCS has also decreased and the detection probability of almost all azimuths has dropped under 50 per cent. The absorbing material coating stealth simulations of two kinds of thickness are carried out, and results show that the stealth effect of active cancellation is much better than absorbing material coating.

Practical implications

An active cancellation system based on SSC algorithm is proposed in this paper, and the effect of active cancellation is verified and compared with that of absorbing materials. A new method for the current active stealth is provided in this paper.

Originality/value

Active cancellation simulation and verification system is established. RCS calculation module, signal-to-noise-ratio (SNR) calculation module and detection probability module are built to verify the effect of active cancellation system. Simultaneously, the absorbing material coating stealth simulation is carried out, and the stealth effect of absorbing material coating and active cancellation are compared and analyzed.

Details

Aircraft Engineering and Aerospace Technology, vol. 91 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 17 October 2016

John Richard McCardle and Joe Bunyan

This paper aims to investigate whether the trabecular architecture found in natural bone can be effectively replicated through the selective laser sintering process of Nylon P2200.

Abstract

Purpose

This paper aims to investigate whether the trabecular architecture found in natural bone can be effectively replicated through the selective laser sintering process of Nylon P2200.

Design/methodology/approach

Trabecular bone was idealised into a scaled up hexagonal cell proven to replicate the natural structure. The structure was modelled in Solidworks 2013 to form a network of interlinking cells. The specific property analysed was the structure toughness through the measurement of the energy absorbed before sample fracture.

Findings

It was found that the impact absorption can be increased with the integration of a greater number of trabecular cells producing a finer resolution and not necessarily by increasing the trabecular size. The information gained from this research may be useful in the design of impact and shock absorbing components, with an emphasis on efficient use of material mass.

Research limitations/implications

Designers and engineers may find biomimetic methods of absorbing shock and impact an efficient alternative consideration in design applications.

Practical implications

The trabecular architecture should be designed so as to be weaker than the bounding surfaces, ensuring that the individual trabecular experience failure first, maximising their energy absorbing capability through increasing the period of deceleration. The simplest way of doing this is to ensure the rod thickness is less than the bounding material thickness.

Originality/value

This work documents original testing of both the RP material and consolidated design of samples of idealised bone structures. It builds on previous work in the area and through the results of empirical testing, derives recommendations for further considerations in this area of design and manufacture of biomimetic structures.

Details

Rapid Prototyping Journal, vol. 22 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 10 October 2016

Hongyan Tian, Jianbing Sang, Rihan Ao and Shujun Hou

As a good absorbing material candidate, a functionally graded wave absorber can be tailored to satisfy the impedance match principle by gradually changing material property. The…

Abstract

Purpose

As a good absorbing material candidate, a functionally graded wave absorber can be tailored to satisfy the impedance match principle by gradually changing material property. The paper aims to discuss these issues.

Design/methodology/approach

The electromagnetic wave absorption properties are discussed. An analysis model is proposed to provide an insight into its mechanical characteristics during wave absorption. Considering the energy-converting and thermal deformation properties, the thermoelastic behaviors of an absorber are analyzed by numerical method. The effects of material and geometrical properties are discussed in detail.

Findings

The results demonstrate that absorbing effect of graded composite is enhanced. Good performance of low reflectance and high absorption with gentle thermal stress distribution can be obtained by proper designing of the gradient absorber.

Originality/value

Functionally graded materials exhibit a progressive compositional gradient change along certain dimension of structures, which can be used as absorbing materials for the gradual change of material property tailored to satisfy the principle of impedance match. The design of functionally graded absorbing materials usually should consider not only the electromagnetic performance, but also the mechanical properties simultaneously. Therefore, few investigations have addressed the mechanical characteristics of absorbers. This paper presents some studies on the electromagnetic, especially mechanical behaviors during electromagnetic wave absorption. It is helpful to provide mechanical reference for designing an absorber.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 May 2021

Satish Geeri and Aditya Kolakoti

The purpose of the present work is to fabricate composite with strong absorbing nature and with more strength. The usage of wireless communication is increasing day by day…

Abstract

Purpose

The purpose of the present work is to fabricate composite with strong absorbing nature and with more strength. The usage of wireless communication is increasing day by day, electromagnetic absorbing material is required to reduce this pollution. In the present experimental investigation, composites were fabricated for zero and 45° fiber orientation and as a filler material of Multiwall Carbon Nanotubes (MWCNTs) for the proposed percentage in the composites. Microwave absorbing properties were investigated for both perfect electric conductor (PEC)-backed composites and without PEC-backed composites.

Design/methodology/approach

The electromagnetic absorbing performance was analyzed based on complex permeability, complex permittivity, dielectric tangent and magnetic tangent losses. The experimentation was done by Vector Network Analyzer in the frequency range of 8.2 to 12.4 GHz by X-band. The surface morphological study was done. The mechanical and thermal properties are also investigated for these composites.

Findings

By investigating the experimental values, the induced percentage of MWCNTs and PEC of composites affects the electromagnetic and microwave absorption properties of the composites. The microwave absorption properties improved when the composites were able to absorb wide bandwidth and low reflection loss. The best results are obtained for PEC-backed composites for 5%, which is about −43.56 dB at 11.1 GHz compared to without PEC-backed composites. The reflection loss is developed by the dielectric loss initiated from MWCNTs and by PEC.

Originality/value

To the best of the authors’ knowledge, no work was reported on hand lay-up method and PEC-backed composites in electromagnetic absorption properties with regression analysis.

Details

World Journal of Engineering, vol. 18 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 16 July 2020

Muhammet Çağrı Ayan, Serap Kiriş, Ahmet Yapici, Muharrem Karaaslan, Oğuzhan Akgöl, Olcay Altıntaş and Emin Ünal

The purpose of this paper is to investigate cotton fabric behavior that is exposed to radar waves between selected operation frequencies as an alternative radar-absorbing material

Abstract

Purpose

The purpose of this paper is to investigate cotton fabric behavior that is exposed to radar waves between selected operation frequencies as an alternative radar-absorbing material (RAM) response. Cotton fabric biocomposite materials were compared with carbon fabric composite materials, which are good absorbers, in terms of mechanical and electromagnetic (EM) properties for that purpose.

Design/methodology/approach

The laminated composite plates were manufactured by using a vacuum infusion process. The EM tests were experimentally performed with a vector network analyzer to measure reflection, transmission and absorption ability of cotton fabric, carbon fabric and cotton–carbon fabric (side by side) composite plates between 3 and 18 GHz. The tensile and low-velocity impact tests were carried out to compare the mechanical properties of cotton fabric and carbon fabric composite plates. A scanning electron microscope was used for viewing the topographical features of fracture surfaces.

Findings

The cotton fabric composite plate exhibits low mechanical values, but it gives higher EM wave absorption values than the carbon fabric composite plate in certain frequency ranges. Comparing the EM absorption properties of the combination of cotton and carbon composites with those of the carbon composite alone, it appears that the cotton–carbon combination can be considered as a better absorber than the carbon composite in a frequency range from 12 to 18 GHz at Ku band.

Originality/value

This paper shows how cotton, which is a natural and easily supplied low-cost raw material, can be evaluated as a RAM.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 27 March 2009

Severino P.C. Marques, Ever J. Barbero and John S.R. Murillo

The purpose of this paper is to present a computationally efficient model to solve combined conduction/radiation heat transfer problems in absorbing, emitting, non‐scattering…

Abstract

Purpose

The purpose of this paper is to present a computationally efficient model to solve combined conduction/radiation heat transfer problems in absorbing, emitting, non‐scattering, non‐gray materials.

Design/methodology/approach

The model is formulated for steady‐state condition and based on an iterative approach where the medium is discretized into finite strips and the extinction spectrum is divided into finite bands to consider the extinction coefficient variation with the wavelength.

Findings

Temperature fields and heat flux distributions are presented to demonstrate the capability of the formulation. It is shown that the model is quite accurate and efficient even for the cases of pure radiation. Differently from other models, the number of iterations required by the model for convergence is very low, even in the cases dominated by radiation.

Originality/value

The model has great potential to contribute with the evaluation and design of materials for thermal insulation, where radiation heat transfer can be the dominant mechanism, such as aerogel materials which are recognized as the solids with the lowest thermal conductivity and are intended to be used in building and construction, aerospace, transportation and other applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 19 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 February 2023

Josué Costa-Baptista, Edith Roland Fotsing, Jacky Mardjono, Daniel Therriault and Annie Ross

The purpose of this paper is the design and experimental investigation of compact hybrid sound-absorbing materials presenting low-frequency and broadband sound absorption.

Abstract

Purpose

The purpose of this paper is the design and experimental investigation of compact hybrid sound-absorbing materials presenting low-frequency and broadband sound absorption.

Design/methodology/approach

The hybrid materials combine microchannels and helical tubes. Microchannels provide broadband sound absorption in the middle frequency range. Helical tubes provide low-frequency absorption. Optimal configurations of microchannels are used and analytical equations are developed to guide the design of the helical tubes. Nine hybrid materials with 30 mm thickness are produced via additive manufacturing. They are combinations of one-, two- and four-layer microchannels and helical tubes with 110, 151 and 250 mm length. The sound absorption coefficient of the hybrid materials is measured using an impedance tube.

Findings

The type of microchannels (i.e. one, two or four layers), the number of rotations and the number of tubes are key parameters affecting the acoustic performance. For instance, in the 500 Hz octave band (α500), sound absorption of a 30 mm thick hybrid material can reach 0.52 which is 5.7 times higher than the α500 of a typical periodic porous material with the same thickness. Moreover, the broadband sound absorption for mid-frequencies is reasonably high with and α1000 > 0.7. The ratio of first absorption peak wavelength to structure thickness λ/T can reach 17, which is characteristic of deep-subwavelength behaviour.

Originality/value

The concept and experimental validation of a compact hybrid material combining a periodic porous structure such as microchannels and long helical tubes are original. The ability to increase low-frequency sound absorption at constant depth is an asset for applications where volume and weight are constraints.

Details

Rapid Prototyping Journal, vol. 29 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 1936

Gases to be silenced are caused to partake of a whirling motion close to the inner surface and past the reticulations of the reticulated wall of a chamber arranged within an outer…

Abstract

Gases to be silenced are caused to partake of a whirling motion close to the inner surface and past the reticulations of the reticulated wall of a chamber arranged within an outer casing. Substantially the whole of the gases flow past the reticulations from a relatively restricted inlet to an outlet, and the whirling motion may be imparted by a deflector plate or curved vane or by a tangential inlet. A casing 1 has at one end a portion 50 terminating in a hemispherical cap 51 with inlet 54, and at the other end a plate 3 with eccentric outlet 5 and a pipe 9 attached thereto. The interior of portion 50 is separated from the interior of the rest of the casing by a plate 2 having an eccentric aperture 4 behind which is a deflector plate 10. Within the portion 50 are hollow conical frusta 52, 53 abutting at their larger ends. The small end of frustum 52 is connected to the inlet 54, while the small end of frustum 53 is connected to the aperture 4. Within the casing 1 are a pair of frustoconical chambers 6, 7 with reticulated walls, the smaller end of chamber (5 entering the larger end of chamber 7 eccentrically, and the smaller end of chamber 7 terminating in the outlet pipe 9. The deflector plate 10, adapted to whirl the gases, is located close to the wall of chamber 6 and comprises a portion 11 inclined to the longitudinal axis of the casing with an edge in contact with the internal surface of chamber 6, and a portion 12 arranged parallel to the axis of the chamber. A similar plate is located behind the entrance to chamber 7. The spaces between the frusta 52, 53 and the outer casing are filled with sound‐absorbing material 57 such as asbestos or coke, or, alternatively, sheet asbestos may be wound round the frusta. The space between the chambers 6, 7 and the casing serves as a cushioning space and may also be filled with sound‐absorbing material such as steel wool, or fibrous asbestos or with material adapted to absorb poisonous gases. An opening 13 may be provided for the removal of solid matter. In a modification (Fig. 2) the inlet pipe 59 is secured to an end plate 58 forming the base of the conical chamber 60, the smaller end of which passes through an eccentric opening in diaphragm 2 into a cylindrical reticulated chamber 15 supported by a diaphragm 16, and is extended by a pipe 62 adapted to direct the gases on to a portion 20 of a deflector plate on the side remote from an aperture 21. The gases then pass through aperture 21 and flow along the inner surface of the chamber with a gyratory motion. A second deflector plate 22, similar to the first, is situated in the chamber 15. In both constructions, the second deflector plate may produce whirling in the same or an opposite direction to the first. In a modification, the reticulated chambers are of spherical form. In Fig. 4 gases enter the chambers 38 tangentially by a pipe 39 and leave by pipes 40, 41. In Figs. 5 to 8 (not shown) different arrangements and combinations of chambers within the casing are described, and in two of the forms, suitable for aircraft, the casing is conical and provided at its rearward or smaller end with a number of perforations to give a gradual outlet. Specification 366,257 is referred to in the Provisional Specification.

Details

Aircraft Engineering and Aerospace Technology, vol. 8 no. 2
Type: Research Article
ISSN: 0002-2667

Article
Publication date: 14 November 2008

George K. Stylios

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects…

1247

Abstract

Examines the fourteenth published year of the ITCRR. Runs the whole gamut of textile innovation, research and testing, some of which investigates hitherto untouched aspects. Subjects discussed include cotton fabric processing, asbestos substitutes, textile adjuncts to cardiovascular surgery, wet textile processes, hand evaluation, nanotechnology, thermoplastic composites, robotic ironing, protective clothing (agricultural and industrial), ecological aspects of fibre properties – to name but a few! There would appear to be no limit to the future potential for textile applications.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 8 June 2020

Mohsen Sajadnia, Sajjad Dehghani, Zahra Noraeepoor and Mohammad Hossein Sheikhi

The purpose of this study is to design and optimize copper indium gallium selenide (CIGS) thin film solar cells.

Abstract

Purpose

The purpose of this study is to design and optimize copper indium gallium selenide (CIGS) thin film solar cells.

Design/methodology/approach

A novel bi-layer CIGS thin film solar cell based on SnS is designed. To improve the performance of the CIGS based thin film solar cell a tin sulfide (SnS) layer is added to the structure, as back surface field and second absorbing layer. Defect recombination centers have a significant effect on the performance of CIGS solar cells by changing recombination rate and charge density. Therefore, performance of the proposed structure is investigated in two stages successively, considering typical and maximum reported trap density for both CIGS and SnS. To achieve valid results, the authors use previously reported experimental parameters in the simulations.

Findings

First by considering the typical reported trap density for both SnS and CIGS, high efficiency of 36%, was obtained. Afterward maximum reported trap densities of 1 × 1019 and 5.6 × 1015 cm−3 were considered for SnS and CIGS, respectively. The efficiency of the optimized cell is 27.17% which is achieved in CIGS and SnS thicknesses of cell are 0.3 and 0.1 µm, respectively. Therefore, even in this case, the obtained efficiency is well greater than previous structures while the absorbing layer thickness is low.

Originality/value

Having results similar to practical CIGS solar cells, the impact of the defects of SnS and CIGS layers was investigated. It was found that affixing SnS between CIGS and Mo layers causes a significant improvement in the efficiency of CIGS thin-film solar cell.

Details

World Journal of Engineering, vol. 17 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of over 19000