Search results

1 – 6 of 6
Article
Publication date: 2 March 2023

Bahareh Nikmehr, Bidur Kafle and Riyadh Al-Ameri

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in…

Abstract

Purpose

This study aimed to review various existing methods for improving the quality of recycled concrete aggregates (RCAs) as a possible substitution for natural aggregates (NAs) in concrete. It is vital as the old paste attached to the RCA weakens its structure. It is due to the porous structure of the RCA with cracks, weakening the interfacial transition zone (ITZ) between the RCA and binding material, negatively impacting the concrete's properties. To this end, various methods for reinforcement of the RCA, cleaning the RCA's old paste and enhancing the quality of the RCA-based concrete without RCA modification are studied in terms of environmental effects, cost and technical matters. Furthermore, this research sought to identify gaps in knowledge and future research directions.

Design/methodology/approach

The review of the relevant journal papers revealed that various methods exist for improving the properties of RCAs and RCA-based concrete. A decision matrix was developed and implemented for ranking these techniques based on environmental, economic and technical criteria.

Findings

The identified methods for reinforcement of the RCA include accelerated carbonation, bio deposition, soaking in polymer emulsions, soaking in waterproofing admixture, soaking in sodium silicate, soaking in nanoparticles and coating with geopolymer slurry. Moreover, cleaning the RCA's old paste is possible using acid, water, heating, thermal and mechanical treatment, thermo-mechanical and electro-dynamic treatment. Added to these treatment techniques, using RCA in saturated surface dry (SSD) mixing approaches and adding fibres or pozzolana enhance the quality of the RCA-based concrete without RCA modification. The study ranked these techniques based on environmental, economic and technical criteria. Ultimately, adding fibres, pozzolana and coating RCA with geopolymer slurry were introduced as the best techniques based on the nominated criteria.

Practical implications

The study supported the need for better knowledge regarding the existing treatment techniques for RCA improvement. The outcomes of this research offer an understanding of each RCA enrichment technique's importance in environmental, economic and technical criteria.

Originality/value

The practicality of the RCA treatment techniques is based on economic, environmental and technical specifications for rating the existing treatment techniques.

Details

Smart and Sustainable Built Environment, vol. 13 no. 3
Type: Research Article
ISSN: 2046-6099

Keywords

Article
Publication date: 19 April 2024

Hoda Sabry Sabry Othman, Salwa H. El-Sabbagh and Galal A. Nawwar

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when…

Abstract

Purpose

This study aims to investigate the behavior of the green biomass-derived copper (lignin/silica/fatty acids) complex, copper lignin/silica/fatty acids (Cu-LSF) complex, when incorporated into the nonpolar ethylene propylene diene (EPDFM) rubber matrix, focusing on its reinforcing and antioxidant effect on the resulting EPDM composites.

Design/methodology/approach

The structure of the prepared EPDM composites was confirmed by Fourier-transform infrared spectroscopy, and the dispersion of the additive fillers and antioxidants in the EPDM matrix was investigated using scanning electron microscopy. Also, the rheometric characteristics, mechanical properties, swelling behavior and thermal gravimetric analysis of all the prepared EPDM composites were explored as well.

Findings

Results revealed that the Cu-LSF complex dispersed well in the nonpolar EPDM rubber matrix, in thepresence of coupling system, with enhanced Cu-LSF-rubber interactions and increased cross-linking density, which reflected on the improved rheological and mechanical properties of the resulting EPDM composites. From the various investigations performed in the current study, the authors can suggest 7–11 phr is the optimal effective concentration of Cu-LSF complex loading. Interestingly, EPDM composites containing Cu-LSF complex showed better antiaging performance, thermal stability and fluid resistance, when compared with those containing the commercial antioxidants (2,2,4-trimethyl-1,2-dihydroquinoline and N-isopropyl-N’-phenyl-p-phenylenediamine). These findings are in good agreement with our previous study on polar nitrile butadiene rubber.

Originality/value

The current study suggests the green biomass-derived Cu-LSF complex to be a promising low-cost and environmentally safe alternative filler and antioxidant to the hazardous commercial ones.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Open Access
Article
Publication date: 14 December 2023

Paola Bellis, Silvia Magnanini and Roberto Verganti

Taking the dialogic organizational development perspective, this study aims to investigate the framing processes when engaging in dialogue for strategy implementation and how…

Abstract

Purpose

Taking the dialogic organizational development perspective, this study aims to investigate the framing processes when engaging in dialogue for strategy implementation and how these enable the evolution of implementation opportunities.

Design/methodology/approach

Through a qualitative exploratory study conducted in a large multinational, the authors analyse the dialogue and interactions among 25 dyads when identifying opportunities to contribute to strategy implementation. The data analysis relies on a process-coding approach and linkography, a valuable protocol analysis for identifying recursive interaction schemas in conversations.

Findings

The authors identify four main framing processes – shaping, unveiling, scattering and shifting – and provide a framework of how these processes affect individuals’ mental models through increasing the tangibility of opportunities or elevating them to new value hierarchies.

Research limitations/implications

From a theoretical perspective, this study contributes to the strategy implementation and organizational development literature, providing a micro-perspective of how dialogue allows early knowledge structures to emerge and shape the development of opportunities for strategy implementation.

Practical implications

From a managerial perspective, the authors offer insights to trigger action and change in individuals to contribute to strategy when moving from formulation to implementation.

Originality/value

Rather than focusing on the structural control view of strategy implementation and the role of the top management team, this study considers strategy implementation as a practice and what it takes for organizational actors who do not take part in strategy formulation to enact and shape opportunities for strategy implementation through constructive dialogue.

Details

Journal of Knowledge Management, vol. 28 no. 11
Type: Research Article
ISSN: 1367-3270

Keywords

Article
Publication date: 24 November 2022

Youssef L. Nashed, Fouad Zahran, Mohamed Adel Youssef, Manal G. Mohamed and Azza M. Mazrouaa

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic…

Abstract

Purpose

The purpose of this study is to examine how well reinforced concrete structures can be shielded against concrete carbonation using anti-carbonation coatings based on synthetic polymer.

Design/methodology/approach

Applying free radical polymerization, an acrylate terpolymer emulsion that a surfactant had stabilized was created. A thermogravimetric analysis, minimum film-forming temperature, Fourier transform infrared spectroscopy and particle size distribution are used to characterize the prepared eco-friendly water base acrylate terpolymer emulsion. Using three different percentages of the acrylate terpolymer emulsion produced, 35%, 45% and 55%, the anti-carbonation coating was formed. Tensile strength, tensile strain, elongation, crack-bridging ability, carbon dioxide permeability, chloride ion diffusion, average pull-off adhesion strength, water vapor transmission, gloss, wet scrub resistance, QUV/weathering and storage stability are the characteristics of the anti-carbonation coating.

Findings

The formulated acrylate terpolymer emulsion enhances anti-carbonation coating performance in CO2 permeability, Cl-diffusion, crack bridging, pull-off adhesion strength and water vapor transmission. The formed coating based on the formulated acrylate terpolymer emulsion performed better than its commercial counterpart.

Practical implications

To protect the steel embedded in concrete from corrosion and increase the life span of concrete, the surface of cement is treated with an anti-carbonation coating based on synthetic acrylate terpolymer emulsion.

Social implications

In addition to saving lives from building collapse, it maintains the infrastructure for the long run.

Originality/value

The anti-carbonation coating, which is based on the synthetic acrylate terpolymer emulsion, is environmentally benign and stops the entry of carbon dioxide and chlorides, which are the main causes of steel corrosion in concrete.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 7 February 2023

Selinay Gumus, Kaan Aksoy and Ayse Aytac

This study aims to investigate the effects of nano or inorganic fillers on unsaturated polyester’s (UPE) thermal, mechanical, and physical properties. UPE reinforced with…

Abstract

Purpose

This study aims to investigate the effects of nano or inorganic fillers on unsaturated polyester’s (UPE) thermal, mechanical, and physical properties. UPE reinforced with nanoparticles shows better properties than the pure polymer itself. Nano or inorganic fillers are used in the polymeric matrix to improve thermal, mechanical and physical properties.

Design/methodology/approach

To improve thermal, mechanical and physical properties, UPE resin was modified with silica (S), boron nitride (BN) and S/BN hybrid nanoparticles at different ratios. Viscosity and solids content measurement, Fourier transform infrared spectroscopy, contact angle measurement, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and thermal conductivity coefficient tests were performed on the samples.

Findings

In the SEM analysis, the UPE sample showed a smooth appearance, while all samples containing additives showed phase separation and overall heterogeneous distribution. TGA results demonstrated that the thermal stability of the resin increased in the presence of S and BN additives. According to the results, it was observed that the presence of S and BN additives in the UPE resin and the use of certain ratios improved the resin properties.

Originality/value

As a result of the literature search, to the best of the authors’ knowledge, no study was found in which BN nanoparticles were included in the UPE resin together with S.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 10 October 2022

P.C. Sarkar, Ammayappan Lakshmanan and Niranjan Kumar

The purpose of this study is to enhance the functional properties of Hessian fabric through resin finishing. Hessian bags made of lignocellulosic jute fiber are commonly used to…

Abstract

Purpose

The purpose of this study is to enhance the functional properties of Hessian fabric through resin finishing. Hessian bags made of lignocellulosic jute fiber are commonly used to pack, store and transport agro-commodities, including horticultural crops such as rice, potato, onion and wheat. However, because of high water affinity, these bags undergo degradation in properties due to moisture release by the stored commodities themselves. Exposure to natural elements, e.g. rain and dew, also causes moisture absorption in hessian bags. Once the bag gets moistened, degradation of jute bags starts due to microbial attack, leading to loss in tensile strength and change in extensibility, leading to ultimate breakage in warp and weft directions of the fabric.

Design/methodology/approach

To overcome the degradation in the functional properties of hessian fabric due to exposure to moisture and microbial attack, the application of semi-synthetic polymeric materials was carried out.

Findings

Tenacity, bursting strength, puncture resistance, tear strength and breaking load, as well as life cycle of resin-treated jute fabric was found to be better than control jute.

Originality/value

To the best of the authors’ knowledge, no recent reports of resin finishing on jute (hessian) fabric with semi-synthetic resins are presently available, other than coating with rubber.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

1 – 6 of 6