Search results

1 – 10 of over 1000
Content available
Article
Publication date: 1 August 1999

78

Abstract

Details

Microelectronics International, vol. 16 no. 2
Type: Research Article
ISSN: 1356-5362

Keywords

Content available
Article
Publication date: 1 October 1998

43

Abstract

Details

Pigment & Resin Technology, vol. 27 no. 5
Type: Research Article
ISSN: 0369-9420

Content available
Article
Publication date: 1 December 1999

98

Abstract

Details

Anti-Corrosion Methods and Materials, vol. 46 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Content available
Article
Publication date: 1 April 2000

35

Abstract

Details

Microelectronics International, vol. 17 no. 1
Type: Research Article
ISSN: 1356-5362

Keywords

Article
Publication date: 1 February 1985

M.C. Hutley, R.F. Stevens and D.E. Putland

The use of optical fibres in sensors is opening up new possible applications for industrial measurement

Abstract

The use of optical fibres in sensors is opening up new possible applications for industrial measurement

Details

Sensor Review, vol. 5 no. 2
Type: Research Article
ISSN: 0260-2288

Article
Publication date: 7 February 2020

Namita Nanda

The purpose of the study is to present a frequency domain spectral finite element model (SFEM) based on fast Fourier transform (FFT) for wave propagation analysis of smart…

Abstract

Purpose

The purpose of the study is to present a frequency domain spectral finite element model (SFEM) based on fast Fourier transform (FFT) for wave propagation analysis of smart laminated composite beams with embedded delamination. For generating and sensing high-frequency elastic waves in composite beams, piezoelectric materials such as lead zirconate titanate (PZT) are used because they can act as both actuators and sensors. The present model is used to investigate the effects of parametric variation of delamination configuration on the propagation of fundamental anti-symmetric wave mode in piezoelectric composite beams.

Design/methodology/approach

The spectral element is derived from the exact solution of the governing equation of motion in frequency domain, obtained through fast Fourier transformation of the time domain equation. The beam is divided into two sublaminates (delamination region) and two base laminates (integral regions). The delamination region is modeled by assuming constant and continuous cross-sectional rotation at the interfaces between the base laminate and sublaminates. The governing differential equation of motion for delaminated composite beam with piezoelectric lamina is obtained using Hamilton’s principle by introducing an electrical potential function.

Findings

A detailed study of the wave response at the sensor shows that the A0 mode can be used for delamination detection in a wide region and is more suitable for detecting small delamination. It is observed that the amplitude and time of arrival of the reflected A0 wave from a delamination are strongly dependent on the size, position of the delamination and the stacking sequence. The degraded material properties because of the loss of stiffness and density in damaged area differently alter the S0 and A0 wave response and the group speed. The present method provides a potential technique for researchers to accurately model delaminations in piezoelectric composite beam structures. The delamination position can be identified if the time of flight of a reflected wave from delamination and the wave propagation speed of A0 (or S0) mode is known.

Originality/value

Spectral finite element modeling of delaminated composite beams with piezoelectric layers has not been reported in the literature yet. The spectral element developed is validated by comparing the present results with those available in the literature. The spectral element developed is then used to investigate the wave propagation characteristics and interaction with delamination in the piezoelectric composite beam.

Details

Aircraft Engineering and Aerospace Technology, vol. 92 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 22 February 2021

Changhai Lin, Sifeng Liu, Zhigeng Fang and Yingjie Yang

The purpose of this paper is to analyze the spectral characteristics of moving average operator and to propose a novel time-frequency hybrid sequence operator.

Abstract

Purpose

The purpose of this paper is to analyze the spectral characteristics of moving average operator and to propose a novel time-frequency hybrid sequence operator.

Design/methodology/approach

Firstly, the complex data is converted into frequency domain data by Fourier transform. An appropriate frequency domain operator is constructed to eliminate the impact of disturbance. Then, the inverse Fourier transform transforms the frequency domain data in which the disturbance is removed, into time domain data. Finally, an appropriate moving average operator of N items is selected based on spectral characteristics to eliminate the influence of periodic factors and noise.

Findings

Through the spectrum analysis of the real-time data sensed and recorded by microwave sensors, the spectral characteristics and the ranges of information, noise and shock disturbance factors in the data can be clarified.

Practical implications

The real-time data analysis results for a drug component monitoring show that the hybrid sequence operator has a good effect on suppressing disturbances, periodic factors and noise implied in the data.

Originality/value

Firstly, the spectral analysis of moving average operator and the novel time-frequency hybrid sequence operator were presented in this paper. For complex data, the ideal effect is difficult to achieve by applying the frequency domain operator or time domain operator alone. The more satisfactory results can be obtained by time-frequency hybrid sequence operator.

Details

Grey Systems: Theory and Application, vol. 12 no. 1
Type: Research Article
ISSN: 2043-9377

Keywords

Article
Publication date: 1 March 1997

Pinhas Z. Bar‐Yoseph and Eduard Moses

Deals with the formulation and application of temporal and spatial spectral element approximations for the solution of convection‐diffusion problems. Proposes a new high‐order…

Abstract

Deals with the formulation and application of temporal and spatial spectral element approximations for the solution of convection‐diffusion problems. Proposes a new high‐order splitting space‐time spectral element method which exploits space‐time discontinuous Galerkin for the first hyperbolic substep and space continuous‐time discontinuous Galerkin for the second parabolic substep. Analyses this method and presents its characteristics in terms of accuracy and stability. Also investigates a subcycling technique, in which several hyperbolic substeps are taken for each parabolic substep; a technique which enables fast, cost‐effective time integration with little loss of accuracy. Demonstrates, by a numerical comparison with other coupled and splitting space‐time spectral element methods, that the proposed method exhibits significant improvements in accuracy, stability and computational efficiency, which suggests that this method is a potential alternative to existing schemes. Describes several areas for future research.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 7 no. 2/3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 October 2017

Ali Sohaib, Laurence Broadbent, Abdul Rehman Farooq, Lyndon Neal Smith and Melvyn Lionel Smith

Significant research has been carried out in terms of development of new bidirectional reflectance distribution function (BRDF) instruments; however, there is still little…

Abstract

Purpose

Significant research has been carried out in terms of development of new bidirectional reflectance distribution function (BRDF) instruments; however, there is still little research available regarding spectral BRDF measurements of human skin. This study aims to investigate the variation in human skin reflectance using a new fibre optic-based spectral-BRDF measurement device.

Design/methodology/approach

Design of this system mainly involves use of multiple fibre optics to illuminate and detect light reflected from a sample, whereas a hemispherical dome was 3D printed to mount the fibres at various slant/tilt angles. To investigate the spectral differences in BRDF of human skin, 3 narrowband filters in the visible spectrum were used, whereas measurements were taken from the back of the hand for Caucasian and Asian skin types.

Findings

The experiments demonstrate that the BRDF of human skin varies with wavelengths in the visible spectrum and it is also different for Caucasian and Asian skin types. Both skin types exhibit off-specular reflection with increase in angle of incidence and show less variation with respect to viewing angles when the angle of incidence is normal to the surface.

Research implications

A database of spectral BRDF measurements of human skin will help not only in creating realistic skin renderings but also in development of novel skin reflectance models for biomedical and machine vision applications. The measurements would also provide means to validate the predictions from existing light transport/spectral simulation models for human skin and will ultimately help in the accurate diagnosis and simulation of various skin disorders.

Originality/value

The proposed system provides fast scatter measurements by utilising multiple fibres to detect light simultaneously at different angles while also allowing easy switching between incident light directions. Due to its flexible design and contact-based measurements, the device is independent of errors due to sample movements and does not require any image registration. Also, measurements taken from the device show that the BRDF of skin varies significantly in the visible spectrum and it is different for Caucasian and Asian skin types.

Details

Sensor Review, vol. 37 no. 4
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 1 September 2000

Index by subjects, compiled by K.G.B. Bakewell covering the following journals: Facilities Volumes 8‐17; Journal of Property Investment & Finance Volumes 8‐17; Property Management…

27428

Abstract

Index by subjects, compiled by K.G.B. Bakewell covering the following journals: Facilities Volumes 8‐17; Journal of Property Investment & Finance Volumes 8‐17; Property Management Volumes 8‐17; Structural Survey Volumes 8‐17.

Details

Facilities, vol. 18 no. 9
Type: Research Article
ISSN: 0263-2772

1 – 10 of over 1000