Search results

1 – 10 of over 4000
Article
Publication date: 31 January 2020

JiaYu Zhou, Zili Li, JianGuo Liu, Xiao Xing, Gan Cui, ShouXin Zhang, Ran Cheng and YiShu Wang

The purpose of this paper is to quantify the influence of alternating current (AC) interference on hydrogen evolution reaction of X80 steel.

Abstract

Purpose

The purpose of this paper is to quantify the influence of alternating current (AC) interference on hydrogen evolution reaction of X80 steel.

Design/methodology/approach

The hydrogen evolution potential was obtained by cathodic potentiodynamic polarization curve. The instantaneous potential under AC interference was obtained by high-frequency acquisition with three-electrode system. Electrochemical impedance spectroscopy and Tafel polarization curves were used to study the influence mechanism of AC interference on instantaneous potential.

Findings

It was concluded that the hydrogen evolution reaction could occur on X80 steel under AC interference. There were critical AC current densities of about 100 to 200 A/m2, beyond which the cathode reaction of X80 steel changed from oxygen absorption to hydrogen evolution. Besides the pH value, the initial polarization potential EZ and impedance module of the steel/electrolyte interface under AC interference were also the factors that affected the critical AC densities in different solutions.

Originality/value

This research quantified the hydrogen evolution capacity of X80 steel under AC interference, which could be applied to clear the effect of AC interference on hydrogen evolution reaction.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 November 2011

Zili Li, Hongna Hao and Qingmiao Ding

The presence of alternating current (AC) causes serious damage on buried pipelines, even when the off potential meets the −0.85 V/CSE criterion. The optimum cathodic protection…

Abstract

Purpose

The presence of alternating current (AC) causes serious damage on buried pipelines, even when the off potential meets the −0.85 V/CSE criterion. The optimum cathodic protection potential (OCPP) is more reliable for cathodic protection. The purpose of this paper is to study the effects of AC on the OCPP and, using electrochemical impedance spectroscopy (EIS), to investigate how to get the optimum cathodic protection.

Design/methodology/approach

The paper describes the application of EIS to investigate the OCPP of X70 steel in a soil simulating solution with different AC interferences.

Findings

The experimental results indicate that AC interference makes the OCPP decrease. It was determined that the −0.85 V/CSE criterion is not appropriate when there is AC interference. When the AC voltage was less than 6 V, the OCPP was approximately −900 mV/SCE, whereas when the AC voltage was more than 7 V, the OCPP was approximately −1,000 mV/SCE.

Originality/value

Although there have been previous research studies on the OCPP, this paper is the first to study the effects of AC interference on the OCPP and it has been confirmed that the OCPP changed when AC interference is present.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 November 2013

Qingmiao Ding, Zili Li and Hongna Hao

The presence of alternating current (AC) causes serious damage on buried pipelines even when the off potential matches the −0.85 V/CSE criterion. The optimum cathodic protection…

Abstract

Purpose

The presence of alternating current (AC) causes serious damage on buried pipelines even when the off potential matches the −0.85 V/CSE criterion. The optimum cathodic protection potential (OCPP) is more accurate for cathodic protection. The paper aims to study how to get the optimum cathodic protection by electrochemical impedance spectroscopy (EIS) and the effects of AC on the OCPP.

Design/methodology/approach

This paper describes the application of EIS to investigate the OCPP of X70 steel in a soil simulating solution with different AC interferences.

Findings

The experimental results indicate that AC interference makes the OCPP decrease and the −0.85 V/CSE criterion is not reasonable when there is AC interference. When the AC voltage is less than 6 V, the OCPP is approximately −900 mV/SCE, and when AC voltage is more than 7 V, the OCPP is roughly −1,000 mV/SCE.

Originality/value

There have been some researches on the OCPP, and the paper is the first one to study the AC effects on the OCPP and found that the OCPP changed when there was AC interference.

Details

Anti-Corrosion Methods and Materials, vol. 60 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 4 October 2019

Yu Fu, Jie Kou and Cuiwei Du

Pipelines are seriously corroded due to the close distance between pipelines and high voltage transmission lines. The purpose of this paper is to study the influence of…

Abstract

Purpose

Pipelines are seriously corroded due to the close distance between pipelines and high voltage transmission lines. The purpose of this paper is to study the influence of alternating current (AC) on corrosion behavior of X80 pipeline steel in coastal soil solution.

Design/methodology/approach

The corrosion behavior of X80 steel under different AC densities in coastal soil solution was investigated by electrochemical measurements and image processing technology. Furthermore, a quantitative description model of AC corrosion through fractal dimension of corrosion image was established.

Findings

The results show that under low AC density the X80 steel is mainly uniform corrosion, and once AC density reaches 150 A/m2, the corrosion morphology gradually turns to pitting corrosion with irregular circle. For another aspect, the fractal dimension of corrosion images shows that the two/three-dimensional fractal dimension increase with the increase of AC density, presenting a linear and an exponential relationship respectively. In addition, the variation of the three-dimensional fractal dimension is the same as that of average corrosion rate. The threshold of the increasing trend of fractal dimension as well as corrosion type is 150 A/m2.

Originality/value

The investigation provides a quantitative method to describe AC corrosion morphology through fractal dimension. Furthermore, the method is of benefit to process corrosion images automatically.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 October 2002

N. Kouloumbi, G. Batis, N. Kioupis, N. Kioupis and P. Asteridis

The aim of this fieldwork was the study of the effect of 50Hz AC, induced by high‐voltage power lines, on the cathodic protection system of a natural gas pipeline. The…

1269

Abstract

The aim of this fieldwork was the study of the effect of 50Hz AC, induced by high‐voltage power lines, on the cathodic protection system of a natural gas pipeline. The effectiveness of cathodic protection was checked through in situ long‐term monitoring and analysis of pipeline electrical parameters. The results gave an insight into the problems of the cathodic protection system operation, caused by AC interference. An AC and DC potential interdependence was observed, that previously has hardly been reported, and was scrutinized in relation to cathodically protected pipelines. The effects of the ACinterference and low frequency DC potential fluctuations, as well as the potential deviations from the protection potential, are examined. These phenomena are associated with corrosion susceptibility and difficulties in obtaining reliable cathodic protection measurements.

Details

Anti-Corrosion Methods and Materials, vol. 49 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 August 2021

Yanbao Guo, Zhenyuan Liu, Hui Huang, Deguo Wang and Renyang He

The corrosion of buried steel pipelines is becoming more serious because of stress corrosion, stray current corrosion and other reasons. This paper aims to study the various…

Abstract

Purpose

The corrosion of buried steel pipelines is becoming more serious because of stress corrosion, stray current corrosion and other reasons. This paper aims to study the various alternating current (AC) interference densities on the stress corrosion cracking behaviors of X80 steel samples under cathodic protection (CP) in the simulated soil electrolyte environment by using an electrochemical method.

Design/methodology/approach

The change of corrosion rate and surface morphology of the X80 steel samples at various AC current densities from 0 to 150 A/m2 or CP potential between −750 and −1,200 mV in the soil-simulating environment was revealed by the electrochemical methods and slow strain rate testing methods.

Findings

The results revealed that with the increase of interference density, the corrosion potential of the X80 steel samples shifted to the negative side, and the corrosion pitting was observed on the surface of the sample, this may cause a danger of energy leak. Moreover, the corrosion rate was found to follow a corresponding change with the stress–strain curve. Besides, with the introduction of the CP system, the corrosion rate of the X80 steel working electrode decreased at a low cathodic potential, while showed an opposite behavior at high cathodic potential. In this study, the correlation between AC stray current, cathodic potential and stress was established, which is beneficial to the protection of oil and gas pipeline.

Originality/value

Investigation results are of benefit to provide a new CP strategy under the interference of AC stray current corrosion and stress corrosion to reduce the corrosion rate of buried pipelines and improve the safety of pipeline transportation.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 November 2017

Yanbao Guo, Hai Tan, Deguo Wang and Tao Meng

With the rapid development of rail transportation and energy-delivery systems, such as buried oil and gas pipelines and high-voltage transmission lines, the alternating current (AC

Abstract

Purpose

With the rapid development of rail transportation and energy-delivery systems, such as buried oil and gas pipelines and high-voltage transmission lines, the alternating current (AC) corrosion of buried steel pipelines is becoming more serious. This paper aims to study the corrosion behaviours of Q235 buried steel pipelines induced by the alternating stray current, with a set of indoor simulated experiment apparatuses.

Design/methodology/approach

The corrosion of the coating holidays of the buried steel pipelines at various AC current densities from 0 to 200 A/m2 in the soil-simulating environment was revealed by the electrochemical and weight-loss methods.

Findings

The results showed that the corrosion potential of the steel shifted negatively obviously and the corrosion rate of the steel increased with the increasing of AC current density. At a low AC current density, the negative deviation of the corrosion potential of the steel was small and the increase of corrosion rate was slight. However, the negative deviation of the corrosion potential was remarkable and the corrosion rate was greatly increased at a relative higher AC current density. The geometrical shape of the corrosion images indicated the corrosion forms changed from uniform corrosion to local corrosion due to the increase of AC interference.

Originality/value

Investigation results are of benefit to provide a new strategy to forecast and evaluate the AC-induced corrosion of the buried pipelines which could improve the safety of pipeline transportation.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 June 2009

I.A. Metwally and A. Al‐Badi

The purpose of this paper is to introduce a theoretical investigation of the pulse‐cathodic protection (PCP) systems to show how they behave under different operating conditions…

Abstract

Purpose

The purpose of this paper is to introduce a theoretical investigation of the pulse‐cathodic protection (PCP) systems to show how they behave under different operating conditions. The effectiveness of the PCP system also is highlighted for a typical large‐scale configuration. The principal technical objectives of this paper are to answer three questions: Are the PCP systems effective in the desert fields? Although they have been approved, what is the reason for their lack of effectiveness in some coastal areas? What are the operation recommendations for the currently installed PCP systems and their future application?

Design/methodology/approach

The factors affecting the cathodic protection of well casings have been investigated theoretically by using a 3D field approach software package current distribution, electromagnetic fields, grounding and soil structure analysis. Cathodic interference with nearby well casings has been investigated thoroughly because corrosion of this kind is more serious than the anodic type. The performance of PCP systems has been analyzed with respect to obtaining better protection‐current distribution along the protected well casing at reduced anode current, together with reduced stray current (corrosion) at any nearby unprotected structure(s).

Findings

For uncoated well casings, protection current pulses are attenuated significantly and are smoothed out to be pure direct current after about 10 percent of the well‐casing buried length. High‐magnitude stray current can be found affecting any switched‐off well casings and hence they can be corroded faster from the top part than unprotected/remote wells, as are deeper well casings that may sustain considerable localized corrosion attack on the upper portions of the casing. Without the formation of a natural protective coating with high resistivity, the PCP system becomes malfunctioning, i.e. its performance becomes very similar to that of the conventional cathodic protection (CP) systems. This effect has been confirmed by field measurements in Oman, where magnesium hydroxide is minimally formed (in desert areas).

Research limitations/implications

In reality, some of the PCP modules at the same station can have a slight deviation in the operating frequency and/or voltage. It is planned, therefore, that the investigation will be extended to simulate such cases and take into account the effect of multi‐layer soils.

Practical implications

Knowing the performance of PCP systems for protecting deep well casings is a critical issue for the oil industry.

Originality/value

The paper provides a sound basis on which oil producers can take decisions about the future application of the PCP systems, optimize their performance, and introduce application restrictions by studying all factors that affect PCP performance. The effectiveness of PCP in desert (sandy/rocky) soil, where calcium‐carbonate deposition predominates over magnesium‐hydroxide formation, has proven to be very similar to that of a conventional CP system. The reliability of artificial oil‐lifting systems will be increased by reducing oil production losses (“oil deferment”) and the rig mobilization, which has very high rent cost.

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 September 2019

Qingmiao Ding, Zili Li, Tao Shen and Gan Cui

This paper aims to research the corrosion behavior of the metal under the disbonded coatings interfered with AC through electrochemical method.

Abstract

Purpose

This paper aims to research the corrosion behavior of the metal under the disbonded coatings interfered with AC through electrochemical method.

Design/methodology/approach

The corrosion behavior of the metal under disbond coating interfered with alternate stray current (AC) was studied by electrochemical methods using the rectangular coating disbonded simulator. The obtained data from electrode potential test, electrochemical impedance spectroscopy (EIS) and polarization curves in simulated soil solution indicated that under the natural corrosion condition, the self-corrosion potential and the corrosion current density of the metal at different depths under disbond coating had obviously changed if there was AC interference.

Findings

The self-corrosion potential of the metal at the same depths under disbond coating shifted negatively with the rising of the AC voltage. Under the condition of cathode polarization, there was still obvious potential gradient with the extension of the deep peeling of the coating gap, and the corrosion current density of the test points was minimum, and the protection effect was best when the cathode protection potential was −1.0 V. When the metal was applied with over-protection, the corrosion rate of the metal increased as AC stray current flowing through it increased.

Originality/value

This paper used the rectangular aperture device to study the corrosion behavior of X80 steel under the disbonded coatings through electrochemical methods when the AC stray current interference voltage was 0V, 1V, 5V or 10V and the protection potential was 0V, −0.9V, −1.0V, −1.2V or −1.3V, respectively. There is great significance to the safe operation and long-term service of pipeline steel in soil environment.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 March 2021

Ailing Wang, Yong Deng, Kaihong Li, Wenlei Li, Dongliang Yu, Gan Cui, JianGuo Liu and Zili Li

Alternating current (AC) corrosion is a type of corrosion that occurs in buried pipelines under AC stray current interference, which can increase the hydrogen embrittlement…

Abstract

Purpose

Alternating current (AC) corrosion is a type of corrosion that occurs in buried pipelines under AC stray current interference, which can increase the hydrogen embrittlement sensitivity of pipelines. However, rare research works have been conducted on the hydrogen permeability characteristics of pipeline steel under AC stray current interference. The purpose of this paper is to study hydrogen permeation behavior of X80 steel under AC stray current interference.

Design/methodology/approach

In this paper, the hydrogen permeation behavior of X80 steel under AC interference is studied by AC hydrogen charging experiment in a dual electrolytic cell. The relationship between hydrogen evolution rate and hydrogen permeation flux is studied using the gas collection method. The difference between AC hydrogen permeability and direct current (DC) hydrogen permeability is also discussed.

Findings

The anodic dissolution caused by AC corrosion promotes the chemical desorption reaction of the adsorbed hydrogen atoms on the surface, reducing the hydrogen atom absorption ratio by 70%. When the AC is smaller than 150░ A/m2, the hydrogen permeation process is controlled by the hydrogen atom generation rate, and the hydrogen permeation flux increases with the increase in hydrogen atom generation rate. When the AC exceeds 400░ A/m2, the hydrogen permeation process is controlled by the absorption ratio. The hydrogen permeation flux decreases with the decrease in the absorption ratio. Under AC interference, there is a maximum hydrogen permeation flux that linearly correlates to the H+ concentration in the solutions.

Originality/value

The high-strength steel is very sensitive to hydrogen embrittlement, and X80 steel has been widely used in oil and gas pipelines. To date, no research has been conducted on the hydrogen permeation behavior of pipeline steel under AC interference, and the hydrogen permeability characteristics of pipeline steel under AC interference are not clear. The research results of this paper are of great significance for ensuring the intrinsic safety of high-strength pipelines under AC stray current interference.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of over 4000