Search results

1 – 9 of 9
Article
Publication date: 24 April 2024

Vahid Ahmadi, Seyed Mohammad Ali Hosseini, Effat Jamalizadeh and Razie Naghizade

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on…

Abstract

Purpose

This paper aims to investigate the corrosion resistance of two types of coatings – one is ceria sol coating and the other is ceria sol coating modified by ZnO nanoparticles on 7075 aluminum alloy in 3.5% NaCl solution.

Design/methodology/approach

Aluminum alloys were dipped into ceria sol and ceria sol modified by ZnO nanoparticles separately and removed after 10 min from the solutions and dried at 110°C for 30 min and heated at 500 °C for 30 min to form the coatings. The coatings have been characterized by using field emission scanning electron microscopy (FE-SEM), electrochemical impedance spectroscopy (EIS), X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS). The EIS tests were performed in a corrosive solution of 3.5% NaCl.

Findings

The results showed that the coating of ceria sol modified by ZnO nanoparticles has higher corrosion resistance than the ceria sol coating and the bare sample. Also, the best efficiency is related to aluminum sample immersion after 1 h in NaCl corrosive solution for coating modified by ZnO nanoparticles.

Originality/value

In this research, the modification of ceria sol coating by ZnO nanoparticles had an effect on improving the corrosion behavior of aluminum alloy. It is also understood that modification of coatings is an effective parameter on corrosion resistance.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 March 2024

Çağın Bolat, Nuri Özdoğan, Sarp Çoban, Berkay Ergene, İsmail Cem Akgün and Ali Gökşenli

This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the…

Abstract

Purpose

This study aims to elucidate the machining properties of low-cost expanded clay-reinforced syntactic foams by using different neural network models for the first time in the literature. The main goal of this endeavor is to create a casting machining-neural network modeling flow-line for real-time foam manufacturing in the industry.

Design/methodology/approach

Samples were manufactured via an industry-based die-casting technology. For the slot milling tests performed with different cutting speeds, depth of cut and lubrication conditions, a 3-axis computer numerical control (CNC) machine was used and the force data were collected through a digital dynamometer. These signals were used as input parameters in neural network modelings.

Findings

Among the algorithms, the scaled-conjugated-gradient (SCG) methodology was the weakest average results, whereas the Levenberg–Marquard (LM) approach was highly successful in foreseeing the cutting forces. As for the input variables, an increase in the depth of cut entailed the cutting forces, and this circumstance was more obvious at the higher cutting speeds.

Research limitations/implications

The effect of milling parameters on the cutting forces of low-cost clay-filled metallic syntactics was examined, and the correct detection of these impacts is considerably prominent in this paper. On the other side, tool life and wear analyses can be studied in future investigations.

Practical implications

It was indicated that the milling forces of the clay-added AA7075 syntactic foams, depending on the cutting parameters, can be anticipated through artificial neural network modeling.

Social implications

It is hoped that analyzing the influence of the cutting parameters using neural network models on the slot milling forces of metallic syntactic foams (MSFs) will be notably useful for research and development (R&D) researchers and design engineers.

Originality/value

This work is the first investigation that focuses on the estimation of slot milling forces of the expanded clay-added AA7075 syntactic foams by using different artificial neural network modeling approaches.

Details

Multidiscipline Modeling in Materials and Structures, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 8 January 2024

Yan Gao, Qiubo Li, Wei Wu, Qiwei Wang, Yizhe Su, Junxi Zhang, Deyuan Lin and Xiaojian Xia

The purpose of this paper is to study the effect of current-carrying condition on the electrochemical process and atmospheric corrosion behavior of the commercial aluminum alloys.

Abstract

Purpose

The purpose of this paper is to study the effect of current-carrying condition on the electrochemical process and atmospheric corrosion behavior of the commercial aluminum alloys.

Design/methodology/approach

Potentiodynamic polarization tests were performed to study the electrochemical process of the aluminum alloys. Salt spray tests and weight loss tests were carried out to study the atmospheric corrosion behavior. The corrosion morphology of the alloys was observed, and the products were analyzed.

Findings

The corrosion process of four aluminum alloys was accelerated in the current-carrying condition. Moreover, the acceleration effect on A2024 and A7075 was much stronger than that on A1050 and A5052. The main factors would be the differences in microstructure and corrosion resistance between these alloys. As the carried current increased, the corrosion rate and corrosion current density of the aluminum alloys gradually increased, with the protection of the corrosion product film decreasing linearly.

Originality/value

This is a recent study on the corrosion behavior of conductors under current-carrying condition, which truly understands the corrosion status of power grid materials. Relevant results provide support for the corrosion protection and safe service of aluminum alloy in power systems.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 29 February 2024

Jie Wan, Biao Chen, Jianghua Shen, Katsuyoshi Kondoh, Shuiqing Liu and Jinshan Li

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during…

Abstract

Purpose

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during fabrication, which are impossible to be removed by heat treatment. This paper aims to remove those microvoids in as-built AlSi10Mg alloys by hot forging and enhance their mechanical properties.

Design/methodology/approach

AlSi10Mg samples were built using prealloyed powder with a set of optimized LPBF parameters, viz. 350 W of laser power, 1,170 mm/s of scan speed, 50 µm of layer thickness and 0.24 mm of hatch spacing. As-built samples were preheated to 430°C followed by immediate pressing with two different thickness reductions of 10% and 35%. The effect of hot forging on the microstructure was analyzed by means of X-ray diffraction, scanning electron microscopy, electron backscattered diffraction and transmission electron microscopy. Tensile tests were performed to reveal the effect of hot forging on the mechanical properties.

Findings

By using hot forging, the large number of microvoids in both as-built and post heat-treated samples were mostly healed. Moreover, the Si particles were finer in forged condition (∼150 nm) compared with those in heat-treated condition (∼300 nm). Tensile tests showed that compared with heat treatment, the hot forging process could noticeably increase tensile strength at no expense of ductility. Consequently, the toughness (integration of tensile stress and strain) of forged alloy increased by ∼86% and ∼24% compared with as-built and heat-treated alloys, respectively.

Originality/value

Hot forging can effectively remove the inevitable microvoids in metals fabricated via LPBF, which is beneficial to the mechanical properties. These findings are inspiring for the evolution of the LPBF technique to eliminate the microvoids and boost the mechanical properties of metals fabricated via LPBF.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 April 2024

Mandeep Singh, Deepak Bhandari and Khushdeep Goyal

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze…

Abstract

Purpose

The purpose of this paper is to examine the mechanical characteristics and optimization of wear parameters of hybrid (TiO2 + Y2O3) nanoparticles with Al matrix using squeeze casting technique.

Design/methodology/approach

The hybrid aluminium matrix nanocomposites (HAMNCs) were fabricated with varying concentrations of titanium oxide (TiO2) and yttrium oxide (Y2O3), from 2.5 to 10 Wt.% in 2.5 Wt.% increments. Dry sliding wear test variables were optimized using the Taguchi method.

Findings

The introduction of hybrid nanoparticles in the aluminium (Al) matrix was evenly distributed in contrast to the base matrix. HAMNC6 (5 Wt.% TiO2 + 5 Wt.% Y2O3) reported the maximum enhancement in mechanical properties (tensile strength, flexural strength, impact strength and density) and decrease in porosity% and elongation% among other HAMNCs. The results showed that the optimal combination of parameters to achieve the lowest wear rate was A3B3C1, or 15 N load, 1.5 m/s sliding velocity and 200 m sliding distance. The sliding distance showed the greatest effect on the dry sliding wear rate of HAMNC6 followed by applied load and sliding velocity. The fractured surfaces of the tensile sample showed traces of cracking as well as substantial craters with fine dimples and the wear worn surfaces were caused by abrasion, cracks and delamination of HAMNC6.

Originality/value

Squeeze-cast Al-reinforced hybrid (TiO2+Y2O3) nanoparticles have been investigated for their impact on mechanical properties and optimization of wear parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 28 February 2024

Ram Niwas and Vikas Kumar

This paper aims to determine the optimum parametric settings for yielding superior mechanical properties, namely, ultimate tensile strength (UTS), yield strength (YS) and…

Abstract

Purpose

This paper aims to determine the optimum parametric settings for yielding superior mechanical properties, namely, ultimate tensile strength (UTS), yield strength (YS) and percentage elongation (EL) of AZ91D/AgNPs/TiO2 hybrid composite fabricated by friction stir processing.

Design/methodology/approach

An empirical model has been developed to govern crucial influencing parameters, namely, rotation speed (RS), tool transverse speed (TS), number of passes (NPS) and reinforcement fraction (RF) or weight percentage. Box Behnken design (BBD) with four input parameters and three levels of each parameter was used to design the experimental work, and analysis of variance (ANOVA) was used to check the acceptability of the developed model. Desirability function analysis (DFA) for a multiresponse optimization approach is integrated with response surface methodology (RSM). The individual desirability index (IDI) was calculated for each response, and a composite desirability index (CDI) was obtained. The optimal parametric settings were determined based on maximum CDI values. A confirmation test is also performed to compare the actual and predicted values of responses.

Findings

The relationship between input parameters and output responses (UTS, YS, and EL) was investigated using the Box-Behnken design (BBD). Silver nanoparticles (AgNPs) and nano-sized titanium dioxide (TiO2) enhanced the ultimate tensile strength and yield strength. It was observed that the inclusion of AgNPs led to an increase in ductility, while the increase in the weight fraction of TiO2 resulted in a decrease in ductility.

Practical implications

AZ91D/AgNPs/TiO2 hybrid composite finds enormous applications in biomedical implants, aerospace, sports and aerospace industries, especially where lightweight materials with high strength are critical.

Originality/value

In terms of optimum value through desirability, the experimental trials yield the following results: maximum value of UTS (318.369 MPa), maximum value of YS (200.120 MPa) and EL (7.610) at 1,021 rpm of RS, 70 mm/min of TS, 4 NPS and level 3 of RF.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 26 February 2024

Madhavarao Singuru, Kesava Rao V.V.S. and Rama Bhadri Raju Chekuri

This study aims to investigate the optimal process parameters of the wire-cut electrical discharge machining (WCEDM) for the machining of the GZR-AA7475 hybrid metal matrix…

Abstract

Purpose

This study aims to investigate the optimal process parameters of the wire-cut electrical discharge machining (WCEDM) for the machining of the GZR-AA7475 hybrid metal matrix composite (HMMC). HMMCs are prepared with 2 Wt.% graphite and 4 Wt.% zirconium dioxide reinforced with aluminium alloy 7475 (GZR-AA7475) composite by using the stir casting method. The objective is to enhance the mechanical properties of the material while preserving its unique features. WCEDM with a 0.18 mm molybdenum wire electrode is used for machining the composite.

Design/methodology/approach

To conduct experimental studies, a Taguchi L27 orthogonal array was adopted. Input variables such as peak current (Ip), pulse-on-time (TON) and flushing pressure (PF) were used. The effect of process parameters on the output responses, such as material removal rate (MRR), surface roughness rate (SRR) and wire wear ratio (WWR), were investigated. The grey relational analysis (GRA) is used to obtain the optimal combination of the process parameters. Analysis of variance (ANOVA) was also used to identify the significant process parameters affecting the output responses.

Findings

Results from the current study concluded that the optimal condition for grey relational grade is obtained at TON = 105 µs, Ip = 100 A and PF = 90 kg/cm2. Peak current is the most prominent parameter influencing the MRR, whereas SRR and WRR are highly influenced by flushing pressure.

Originality/value

Identifying the optimal process parameters in WCEDM for machining of GZR-AA7475 HMMC. ANOVA and GRA are used to obtain the optimal combination of the process parameters.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 3 November 2022

Rajat Yadav, Anas Islam and Vijay Kumar Dwivedi

The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and…

62

Abstract

Purpose

The purpose of this paper is to study Al-based green composite. To make composite samples of aluminium alloy (AA3105) with different weight percentages of rice husk ash (RHA) and eggshell (ES) particles as reinforcement, stir casting method was used.

Design/methodology/approach

Several other aspects, including the weight percent of reinforcing agent particles, the applied stress and the sliding speed, were taken into consideration. During the course of the wear test, the sliding distance that was recorded varied from a minimum of 1,000 m all the way up to a maximum of 3,135 m (10, 15, 20, 25 and 30 min). The typical range for normal loads is 8–24 N, and their speed is 1.58 m/s.

Findings

With the AA/ES/RHA composite, the wear rates decreases when the grain size of the reinforcing particles enhanced. Scanning electron microscopy images of worn surfaces show that at low speeds, delaminating and ploughing are the main causes of wear. At high speeds, ploughing is major cause of wear. Composites with better wear-resistant properties can be used in wide range of tribological applications, especially in the automotive industry. It was found that hardness increases at the same time as the weight of the reinforcement increases. Tensile and hardness were maximized at 10% reinforcement mix in Al3105.

Originality/value

In this work, ES and RHA has been used to develop green metal matrix composite to support green revolution as promoted/suggested by United Nations thus reducing the environmental pollution.

Details

World Journal of Engineering, vol. 21 no. 1
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 9 of 9