Search results

1 – 6 of 6
Article
Publication date: 24 August 2021

Deepak Sharma and Rajesh Kumar Bhushan

Parts that are to be used in aircraft, satellites, automobiles and ships should have sound microstructure. Components made from AA6082/Si3N4 and AA6082/SiC composites are in…

Abstract

Purpose

Parts that are to be used in aircraft, satellites, automobiles and ships should have sound microstructure. Components made from AA6082/Si3N4 and AA6082/SiC composites are in demand from industries. Hence, these components are to be fabricated by suitable technique at the appropriate value of process parameters. The purpose of this paper is Microstructure analysis of AA6082/Si3N4 and AA6082/SiC composites

Design/methodology/approach

AA6082/Si3N4 and AA6082/SiC composites are successfully fabricated using the stir casting process. Their microstructures have been analyzed. This has been done at different magnification. The effect of the addition of Si3N4 and SiC particles in the 6082 aluminum alloy is investigated. Microstructure of AA6082/Si3N4 and AA6082/SiC composites are also compared. Results show that Si3N4 and SiC particles have good wettability with AA6082. These reinforcement particles are homogeneously distributed in the matrix of AA6082.

Findings

There are no adverse effects of reactions in the microstructure of AA6082/Si3N4 and AA6082/SiC composites. There is not much difference between the distribution and interfacial characteristics of Si3N4 and SiC particles. AA6082/Si3N4 and AA6082/SiC composites have good properties. This is high strength at low density. Due to which they become suitable for the aircraft and space industry. So far, SiC, Al2O3 and tungsten carbide have been mostly used as reinforcements with different grades of aluminum alloy.

Originality/value

Not much experimental work is found with Si3N4 and SiC particles as reinforcement with AA6082. The novelty of this research work is that an effort has been made to fabricate AA6082/Si3N4 and AA6082/SiC composites at such values of process parameters, by stir casting process, so that sound and defect free microstructure is obtained. Microstructure of AA6082/Si3N4 and AA6082/SiC composites is also compared, to find which is better.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 28 October 2019

Rajesh Kumar Bhushan and Deepak Sharma

Sound microstructure components are necessary for reliability and safety; hence, these components are used in aircraft, satellite, automobiles and ships, where many commercial…

Abstract

Purpose

Sound microstructure components are necessary for reliability and safety; hence, these components are used in aircraft, satellite, automobiles and ships, where many commercial alloys are not suitable. The paper aims to discuss this issue.

Design/methodology/approach

AA6082/Si3N4 and AA6082/SiC composites were fabricated using the stir-casting process considering 5, 10 and 15 vol.% of reinforcement particles. Density and porosity of AA6082/Si3N4 and AA6082/SiC composites were calculated. Characterization was done using an X-ray (EDX) detector, attached to SEM. The effect of addition of Si3N4 and SiC particulates in the AA6082 was investigated.

Findings

Results showed that Si3N4 and SiC particulates had good wettability with AA6082 and were uniformly distributed in AA6082 matrix. No adverse effects of reactions were noticed in the microstructure of AA6082/Si3N4 and AA6082/SiC composites.

Research limitations/implications

AA6082 with more than 15 vol.% of Si3N4 and AA6082/SiC reinforcement particles do not find industrial application where high hardness and tensile strength are required.

Practical implications

Components made from AA6082/Si3N4 and AA6082/SiC composites find their application where high hardness with better tensile strength is required.

Social implications

Naturally and locally available materials are utilized for fabrication.

Originality/value

Little work is available in the literature on fabrication and characterization of AA6082/Si3N4 and AA6082/SiC composites. The authors have identified the process parameters at which proper fabrication is done and sound microstructure is obtained.

Details

International Journal of Structural Integrity, vol. 11 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 14 December 2023

Adem Karci, Veysel Erturun, Eşref Çakir and Yakup Çam

This study aims to investigate the fatigue crack propagation behavior of SiC particle-reinforced 2124 Al alloy composites under constant amplitude axial loading at a stress ratio…

Abstract

Purpose

This study aims to investigate the fatigue crack propagation behavior of SiC particle-reinforced 2124 Al alloy composites under constant amplitude axial loading at a stress ratio of R = 0.1. For this purpose, it is performed experiments and comparatively analyze the results by producing 5, 10, 15 Vol.% SiCp-reinforced composites and unreinforced 2124 Al alloy billets with powder metallurgy (PM) production technique.

Design/methodology/approach

With the PM production technique, SiCp-reinforced composite and unreinforced 2124 Al alloy billets were produced at 5%, 10%, 15% volume ratios. After the produced billets were extruded and 5 mm thick plates were formed, tensile and fatigue crack propagation compact tensile (CT) samples were prepared. Optical microscope examinations were carried out to determine the microstructural properties of billet and samples. To determine the SiC particle–matrix interactions due to the composite microstructure, unlike the Al alloy, which affects the crack initiation life and crack propagation rate, detailed scanning electron microscopy (SEM) studies have been carried out.

Findings

Optical microscope examinations for the determination of the microstructural properties of billet and samples showed that although SiC particles were rarely clustered in the Al alloy matrix, they were generally homogeneously dispersed. Fatigue crack propagation rates were determined experimentally. While the highest crack initiation resistance was achieved at 5% SiC volume ratio, the slowest crack propagation rate in the stable crack propagation region was found in the unreinforced 2124 Al alloy. At volume ratios greater than 5%, the number of crack initiation cycles decreases and the propagation rate increases.

Originality/value

As a requirement of damage tolerance design, the fatigue crack propagation rate and fatigue behavior of materials to be used in high-tech vehicles such as aircraft structural parts should be well characterized. Therefore, safer use of these materials in critical structural parts becomes widespread. In this study, besides measuring fatigue crack propagation rates, the mechanisms causing crack acceleration or deceleration were determined by applying detailed SEM examinations.

Details

Aircraft Engineering and Aerospace Technology, vol. 96 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 November 2021

M. Poornesh, Shreeranga Bhat, E.V. Gijo and Pavana Kumara Bellairu

This article aims to study the tensile properties of a functionally graded composite structure with Al–18wt%Si alloy as the matrix material and silicon carbide (SiC) particles as…

Abstract

Purpose

This article aims to study the tensile properties of a functionally graded composite structure with Al–18wt%Si alloy as the matrix material and silicon carbide (SiC) particles as the reinforcing element. More specifically, the study's primary objective is to optimize the composition of the material elements using a robust statistical approach.

Design/methodology/approach

In this research, the composite material is fabricated using a combination of stir casting and the centrifugal casting technique. Moreover, the test specimen required to study the tensile strength are prepared according to the ASTM (American Society for Testing and Materials) standards. Eventually, optimal composition to maximize the tensile property of the material is determined using the mixture design approach.

Findings

The investigation results imply that the addition of the SiC plays a crucial role in increasing the tensile strength of the composite. The optical microstructural images of the composite show the adequate distribution of the reinforcing particles with the matrix. The proposed regression model shows better predictability of tensile strength. In addition, the methodology aids in optimizing the mixture component values to maximize the tensile strength of the produced functionally graded composite structure.

Originality/value

Little work has been reported so far where a hypereutectic Al–Si alloy is considered the matrix material to produce the composite structure. The article attempts to make a composite structure by using a combination of stir casting and centrifugal casting. Furthermore, it employs the mixture design to optimize the composition and predict the model of the study, which is one of a kind in the field of material science.

Article
Publication date: 11 August 2022

Royal Madan and Shubhankar Bhowmick

The purpose of this study is to investigate the performance of disks that can be increased by functionally grading the disk in the radial direction; there are several but distinct…

Abstract

Purpose

The purpose of this study is to investigate the performance of disks that can be increased by functionally grading the disk in the radial direction; there are several but distinct categories of literature that pertain to the fabrication of disk in the thickness direction, but to the best of the authors’ knowledge, no study has been conducted yet, in which gradient composition changes radially.

Design/methodology/approach

A powder metallurgy technique was used for the fabrication of Al-SiC-based, three-and five-layered functionally graded (FG) disk. The variation of volume fraction of reinforcement particles (SiC) in a disk changes radially. Finite element analysis has been performed to investigate stress distribution in a layered disk.

Findings

The microstructural investigation was carried out under an optical microscope and scanning electron microscopy integrated with EDS, confirming a uniform distribution of SiC in the matrix (Al). Interface microstructure indicates a successful fabrication of FG material because the transition is uniform in the graded layer without any development of crack or void at the interface. The grain size in the layers decreases with the addition of SiC particles. Additionally, the disk hardness increases as the SiC composition in the layer increases.

Practical implications

An FG disk can be used in a wide range of machinery, from power transmission assemblies to energy storage devices (e.g. flywheel, gears, rotors and disk brake).

Originality/value

The proposed powder metallurgy technique could be used in industries for the fabrication of simple to complicated geometries with FG properties.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 2
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 15 October 2021

K. Ch Appa Rao, Anil Kumar Birru, Praveen Kumar Bannaravuri and E. Daniel Francis

Nowadays, ample industries are fascinated to look for high strength and light weight materials for the development of robust parts. Because of light weight and high stiffness to…

Abstract

Purpose

Nowadays, ample industries are fascinated to look for high strength and light weight materials for the development of robust parts. Because of light weight and high stiffness to weight ratio; usage of aluminum parts is growing rapidly, especially in automotive engineering. Process improvement of Al alloys and their grain structure refinement is the current area of interest in casting companies. In this research work, an investigation has been carried out to enhance the process improvement of die casting by optimization of various significant parameters and their refinement of grains by the effect of Nb-C novel grain refiner.

Design/methodology/approach

L27 orthogonal array (OA) has been considered to optimize the preferred casting input parameters such as molten metal temperature (°C), die temperature (°C), injection pressure (bar), Al-3.5Nb-1.5 C novel grain refiner and Ni alloying additions as key process parameters in order to increase the quality and efficiency of Al-9Si-3Cu aluminum alloy die casting by reducing the porosity formation.

Findings

It was observed that the porosity values have significantly decreased from 0.88% to 0.25% particularly at 0.1 wt.% of new grain refiner and 0.5 wt. % of Al-6Ni master alloy. As per the ANOVA results, it was observed that Al-3.5FeNb-1.5 C grain refiner (F value 2609.22), Al-6Ni alloying addition (F value 1329.13), molten metal temperature (F value 1002.43) and, injection pressure (F value 448.06) are the factors that significantly affects the porosity, whereas die temperature was found to be insignificant. The results show that new grain refiner is one the most significant factor among the other selected parameters. The contribution of the new grain refiner to the variation of mean casting porosity is around 57.74%. confidence interval (CI) has also been estimated as 0.013 for 95% consistency level to validate the predicted range of optimum casting porosity of aforesaid alloy.

Originality/value

To the best of the authors' knowledge, no study has been conducted in the past to investigate the combined effect of these die casting parameters and composition factors for the development of Al-Si robust cast parts. The paper represents original research and provides new information for the fabrication of die casting parts.

Details

International Journal of Structural Integrity, vol. 13 no. 1
Type: Research Article
ISSN: 1757-9864

Keywords

1 – 6 of 6