Search results

1 – 10 of 46
Article
Publication date: 12 May 2020

Nitin Panaskar and Ravi Prakash Terkar

Recently, several studies have been performed on lap welding of aluminum and copper using friction stir welding (FSW). The formation of intermetallic compounds at the weld…

Abstract

Purpose

Recently, several studies have been performed on lap welding of aluminum and copper using friction stir welding (FSW). The formation of intermetallic compounds at the weld interface hampers the weld quality. The use of an intermediate layer of a compatible material during welding reduces the formation of intermetallic compounds. The purpose of this paper is to optimize the FSW process parameters for AA6063-ETP copper weld, using a compatible zinc intermediate filler metal.

Design/methodology/approach

In the present study, a three-level, three-factor central composite design (CCD) has been used to determine the effect of various process parameters, namely, tool rotational speed, tool traverse speed and thickness of inter-filler zinc foil on ultimate tensile strength of the weld. A total of 60 experimental data were fitted in the CCD. The experiments were performed with tool rotational speeds of 1,000, 1,200 and 1,400 rpm each of them with tool traverse speeds of 5, 10 and 15 mm/min. A zinc inter-filler foil of 0.2 and 0.4 mm was also used. The macrograph of the weld surface under different process parameters and the tensile strength of the weld have been investigated.

Findings

The feasibility of joining 3 mm thick AA6063-ETP copper using zinc inter-filler is established. The regression analysis showed a good fit of the experimental data to the second-order polynomial model with a coefficient of determination (R2) value of 0.9759 and model F-value of 240.33. A good agreement between the prediction model and experimental findings validates the reliability of the developed model. The tool rotational speed, tool traverse speed and thickness of inter-filler zinc foil significantly affected the tensile strength of the weld. The optimal conditions found for the weld were, rotational speed of 1,212.83 rpm and traverse speed of 9.63 mm/min and zinc foil thickness is 0.157 mm; by using optimized values, ultimate tensile strength of 122.87 MPa was achieved, from the desirability function.

Originality/value

Aluminium and copper sheets could be joined feasibly using a zinc inter-filler. The maximum tensile strength of joints formed by inter-filler (122.87 MPa) was significantly better as compared to those without using inter-filler (83.78 MPa). The optimum process parameters to achieve maximum tensile strength were found by CCD.

Details

World Journal of Engineering, vol. 17 no. 4
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 30 September 2022

Abdul Kareem Abdul Jawwad, Adnan Al-Bashir, Muhammad Saleem and Bassam Hasanain

This study aims to investigate and model interrelationships between process parameters, geometrical profile characteristics and mechanical properties of industrially extruded…

Abstract

Purpose

This study aims to investigate and model interrelationships between process parameters, geometrical profile characteristics and mechanical properties of industrially extruded aluminum alloys.

Design/methodology/approach

Statistical design of experiments (DOE) was applied to investigate and model the effects of eight factors including extrusion ratio, stem speed, billet-preheat temperature, number of die cavities, quenching media (water/air), time and temperature of artificial aging treatment and profile nominal thickness on four mechanical properties (yield strength, ultimate tensile strength, percent elongation and hardness). Experiments were carried out at an actual extrusion plant using 8-in. diameter billets on an extrusion press with 2,200 ton capacity.

Findings

Main factors and factor interactions controlling mechanical properties were identified and discussed qualitatively. Quantitative models with high prediction accuracy (in excess of 95%) were also obtained and discussed.

Practical implications

The obtained results are believed to be of great importance to researchers and industrial practitioners in the aluminum extrusion industry.

Originality/value

All practical and relevant parameters have been used to model all important mechanical properties in a collective manner in one study and within actual industrial setup. This is in contrast to all previous studies where either a partial set of parameters and/or mechanical properties are discussed and mostly under limited laboratory setup.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 6
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 3 December 2018

Priyabrata Sahoo, Mantra Prasad Satpathy, Vishnu Kumar Singh and Asish Bandyopadhyay

Surface roughness and vibration during machining are inevitable which critically affect the product quality characteristics. This paper aims to suggest the implementation of a…

Abstract

Purpose

Surface roughness and vibration during machining are inevitable which critically affect the product quality characteristics. This paper aims to suggest the implementation of a multi-objective optimization technique to obtain the favorable parametric conditions which lead to minimum tool vibration and surface roughness of 6063-T6 aluminum alloy in computer numerically controlled (CNC) turning.

Design/methodology/approach

The case study has been accomplished according to response surface methodology RSM’s Box–Behnken design (BBD) matrix using Titanium Nitride-coated Tungsten Carbide insert in a dry environment. As the experimental results are quite nonlinear, a second-order regression model has been developed for the responses (surface roughness and tool vibration) in terms of input cutting parameters (spindle speed, feed rate and depth of cut). The goodness of fit of the models has also been verified with analysis of variance (ANOVA) results.

Findings

The significance efficacy of input parameters on surface roughness and tool vibrations has been illustrated through multi-objective overlaid 3D surface plots and contour plots. Finally, parametric optimization has been performed to get the desired response values under the umbrella of weighted aggregate sum product assessment (WASPAS) method and verified confidently with confirmatory test results.

Originality/value

The results of this study reveals that hybrid RSM with WASPAS method can be readily applicable to optimize multi-response problems in the manufacturing field with higher confidence.

Details

World Journal of Engineering, vol. 15 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 8 April 2014

Joseph S. Ajiboye, Saheed A. Adebayo and Temitayo M. Azeez

The purpose of this paper is to investigate the degree of improvement in mechanical properties of aluminum alloy (AA6063) after processing with equal channel angular extrusion…

Abstract

Purpose

The purpose of this paper is to investigate the degree of improvement in mechanical properties of aluminum alloy (AA6063) after processing with equal channel angular extrusion (ECAE) using four environmentally benign lubricants.

Design/methodology/approach

Aluminum (Al) 6063 bar was annealed at 350°C for 1 hour, machined and cut to billets measuring 14 × 14 × 44 mm3. These specimens for extrusions were machined to the specified dimension to a visibly good finish. The billets were extruded through ECAE die of 14 × 14 mm2 channel cross-section area; the channel angle was 120°; and the angle of the outer arc of the channels was 30°. The punch and container used for the experiment were made of tool steel alloy AISI D2, and were chromium-coated and polished. Four lubricants such as palm, olive, coconut and groundnut oils were used in this study.

Findings

The yield, ultimate tensile strengths (UTS) and the ductility of the material ECAEed with palm oil as lubricant, which gave the least extrusion pressure, produces the maximum yield, UTS and ductility, followed by groundnut oil and coconut oil, while olive oil gave the least yield strength, (UTS) and ductility. However, palm oil and olive oil have better load reduction than other lubricants. Furthermore, from the hardness results, though scattered, all of the points at the tensile strained side of the extrudate lie within a reasonably narrow band, suggesting a high degree of homogeneity and greater hardness value within the rod than the compressive side after being ECAEed.

Originality/value

It is shown in the paper that all the lubricants tested greatly enhanced mechanical properties of Al 6063 and can effectively replace the petroleum-based lubricants used in forging operations.

Details

Industrial Lubrication and Tribology, vol. 66 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 22 November 2021

Arvind K. Agrawal and R. Ganesh Narayanan

The current work aims to propose a finite element (FE) simulation methodology to predict the formability of friction stir processed (FSPed) tubes by end forming. Moreover, a…

Abstract

Purpose

The current work aims to propose a finite element (FE) simulation methodology to predict the formability of friction stir processed (FSPed) tubes by end forming. Moreover, a strain mapping method is also presented to predict the end forming instabilities.

Design/methodology/approach

In this work, FE simulation of end forming of raw tubes and FSPed AA6063-T6 tubes are done using Abaqus (explicit) incorporating anisotropic properties of the raw tube and FSPed zone. Actual thickness of the FSPed zone is also implemented. Expansion, reduction and beading are the end forming operations considered. Load requirement and instabilities are predicted. A new method “strain mapping method” is followed to predict the failure instabilities in expansion and beading, while during reduction, wrinkling is predicted by FE simulations. Lab scale experiments on FSP and end forming are done for validation at various rotational speeds.

Findings

Results reveal that in the case of expansion and reduction of FSPed tubes, forming load predictions are accurate, while in beading, after initiation of bead, predictions are not accurate. Experimental observation on the type of instability is consistently predicted during numerical simulations. Prediction of displacement at failure by strain mapping method is encouraging in most of the cases including those that are FSPed. Hence, it is suggested that the method can be utilized to evaluate the onset of failure during tube expansion and beading.

Originality/value

FE simulation methodology including anisotropic properties of raw tube and FSPed tubes is proposed, which is not attempted until now even for normal tubes. Strain mapping method is easy to implement for instability predictions, which is done usually by failure theories and forming limit diagram.

Details

Multidiscipline Modeling in Materials and Structures, vol. 18 no. 1
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 24 September 2019

Isaac Dinaharan, Ramaswamy Palanivel, Natarajan Murugan and Rudolf Frans Laubscher

Friction stir processing (FSP) as a solid-state process has the potential for the production of effective aluminum matrix composites (AMCs). In this investigation, various ceramic…

Abstract

Purpose

Friction stir processing (FSP) as a solid-state process has the potential for the production of effective aluminum matrix composites (AMCs). In this investigation, various ceramic particles including B4C, TiC, SiC, Al2O3 and WC were incorporated as the dispersed phase within AA6082 aluminum alloy by FSP. The wear rate of the composite is then investigated experimentally by making use of a design of experiments technique where wear rate is evaluated as the output parameter. The input parameters considered include tool rotational speed, traverse speed, groove width and ceramic particle type. An artificial neural network (ANN) simulation was then used to describe the wear rate of the surface composites. The weights of the network were adjusted to minimize the mean squared error using a feed forward back propagation technique. The effect of the individual input parameters on wear rate was then inferred from the ANN models. Trends are presented and related to the associated microstructures observed. The TiC infused AMC displayed the lowest wear rate whereas the Al2O3 infused AMC displayed the highest, within the scope of the current investigation. The paper aims to discuss these issues.

Design/methodology/approach

The paper used ANN for the research study.

Findings

The finding of this paper is that the wear rate of AA6063 aluminum surface composites is influenced remarkably by FSP parameters.

Originality/value

Original work of authors.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 2
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 10 May 2021

Ravi Butola, N. Yuvaraj, Ravi Pratap Singh, Lakshay Tyagi and Faim Khan

This study aims to analyse the changes in mechanical and wear performance of aluminium alloy when yttrium oxide particles are incorporated. The microstructures are studied to…

Abstract

Purpose

This study aims to analyse the changes in mechanical and wear performance of aluminium alloy when yttrium oxide particles are incorporated. The microstructures are studied to analyse the change in the grain structures. Worn surfaces are observed via scanning electron microscope to study the wear mechanism in detail.

Design/methodology/approach

Stir casting is used to incorporate varying composition of yttrium particles, having an average particle size of 25 micrometer, in aluminium alloy 6063 matrix. Wear testing is carried out by DUCOM manufactured high temperature rotatory tribometer, and an indentation test is used for analysing the microhardness of the fabricated samples.

Findings

Microhardness of the material is increased with the increasing content of particulate addition. With the increasing content of reinforcement, more refined grains are produced. The load is transferred from the matrix to more rigid yttrium oxide particles. These factors contributed to escalated microhardness of the reinforced samples. Particulate addition enhanced the wear performance of the material; this might be attributed to increased microhardness and formation of an oxide layer.

Originality/value

Aluminium composites are finding wide applications in various industries, and there is always a requirement of material with enhanced tribological properties. Yttrium oxide particles exhibit improved mechanical properties, and their interaction with the aluminium matrix has not been studied much in the past. So, in this work, yttrium oxide incorporated aluminium matrix is studied.

Details

World Journal of Engineering, vol. 19 no. 3
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 19 June 2019

Shutian Liu, Xueshan Ding and Zeqi Tong

This paper aims to study the energy absorption properties of the thin-walled square tube with lateral piecewise variable thickness under axial crashing and the influence of the…

Abstract

Purpose

This paper aims to study the energy absorption properties of the thin-walled square tube with lateral piecewise variable thickness under axial crashing and the influence of the tube parameters on energy absorption.

Design/methodology/approach

In this work, the energy absorption properties of the thin-walled square tube were analyzed by theoretical, numerical and experimental approach. The numerical results are obtained based on the finite element method. The explicit formulation for predicting the mean crushing force of the tube with lateral piecewise variable thickness was derived based on Super Folding Element method. The limitation of the prediction formulation was analyzed by numerical calculation. The numerical calculation was also used to compare the energy absorption between the tube with lateral piecewise variable thickness and other tubes, and to carry out the parametric analysis.

Findings

Results indicate that the thin-walled tube with lateral piecewise variable thickness has higher energy absorption properties than the uniform thickness tubes and the tubes with lateral linear variable thickness. The thickness of the corner is the key factor for the energy absorption of the tubes. The thickness of the non-corner region is the secondary factor. Increasing the corner thickness and decreasing the non-corner thickness can make the energy absorption improved. It is also found that the prediction formulation of the mean crushing force given in this paper can quickly and accurately predict the energy absorption of the square tube.

Originality/value

The outcome of the present research provides a design idea to improve the energy absorption of thin-walled tube by designing cross-section thickness and gives an explicit formulation for predicting the mean crushing force quickly and accurately.

Details

Engineering Computations, vol. 36 no. 8
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 8 August 2022

Xinxiang Li, Wen Zhan, Xuzheng Qian, Yunhe Zu, Fan Xie, Feng Tian, Xiaohui Liu and Yunhu Ding

This paper aims to focus the synchronous chemical conversion technology–based titanium/zirconium composite on 6061, 7075 aluminum alloys and galvanized steel.

Abstract

Purpose

This paper aims to focus the synchronous chemical conversion technology–based titanium/zirconium composite on 6061, 7075 aluminum alloys and galvanized steel.

Design/methodology/approach

The effects of pH, temperature, reaction time and other process parameters on the corrosion resistance of the three metal surface coatings were investigated by copper sulfate drop and electrochemical corrosion performance tests under a certain content of H2TiF6 and H2ZrF6. The surface morphology and element distribution of the conversion coating were analyzed by scanning electron microscope and X-ray photoelectron spectroscopy.

Findings

The results show that the optimal synchronization chemical conversion conditions of 6061/7075 aluminum alloys/galvanized steel are controlled as follows: H2TiF6 2.2 mL/L, H2ZrF6 1 mL/L, pH 3.9, conversion temperature 35°C and conversion time 120 s.

Originality/value

Multi-metals chemical conversion coating can be obtained simultaneously with uniform corrosion resistance and surface morphology. The presence of microdomain features in multiple metals facilitates simultaneous chemical conversion into coatings.

Details

Anti-Corrosion Methods and Materials, vol. 69 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 46