Search results

1 – 10 of 16
Article
Publication date: 16 April 2024

Maryam Hasanzadeh, Fereshteh Kalantari, Hadi Emamat, Hamid Ghalandari and Hadith Tangestani

Iron deficiency anemia (IDA) is the most common nutritional anemia in the world and a pervasive health problem, especially in developing countries. Children under two years of age…

Abstract

Purpose

Iron deficiency anemia (IDA) is the most common nutritional anemia in the world and a pervasive health problem, especially in developing countries. Children under two years of age are more prone to be affected by IDA. The best strategy to prevent and treat IDA is to use iron supplements. This study aims to examine the factors associated with noncompliance (such as non-utilization or inconsistent usage) of iron drop supplementation among infants between 6 and 24 months old.

Design/methodology/approach

Online databases (PubMed, Scopus and SID) were searched to retrieve relevant articles published from inception up to July 2023. Among the 2,177 articles detected, after removing duplicate and irrelevant titles, 21 cross-sectional studies that met the authors’ inclusion criteria were included. Screening for articles and data extraction were conducted separately by two researchers.

Findings

The findings suggest that some factors related to mothers, such as education, knowledge, attitude and performance; some factors associated with child such as child’s gastrointestinal and dental complications; taste and smell of iron drops; and birth order and gender are the main determinants of adherence to iron supplementation.

Originality/value

It can be proposed that the most significant factors affecting the feeding of iron drops to children under the age of two include: the level of mother’s awareness, socio-economic status of the household and the occurrence of digestive complications following the supplementation. Given these observations, adopting proper policies toward improving the nutritional awareness of mothers and producing iron supplements with minimal side effects seems crucial.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Case study
Publication date: 1 January 2024

Savitha Chilakamarri and Prashanth Kumar Sreram

The learning outcomes of this case study are to develop an understanding of informal business practices (IBP) from an economic and a behavioural perspective, identify the pros and…

Abstract

Learning outcomes

The learning outcomes of this case study are to develop an understanding of informal business practices (IBP) from an economic and a behavioural perspective, identify the pros and cons of IBP and how they can hinder the realization of entrepreneurial aspirations, use the effectuation perspective to understand the entrepreneurial journey of the protagonist and apply the strengths, weaknesses, opportunities and threats (SWOT) analysis and effectuation theory to understand the need for transition from informal to formal business practices.

Case overview/synopsis

KSN Iyengar Catering Services (KSNICS) had gained popularity for cooking and serving traditional “Iyengar” cuisine during festivals, ceremonies and other auspicious occasions. With the passage of time, KSNICS slowly diversified into offering food carrier services, corporate catering and preparation of sweets/savouries during the Diwali festival. The enterprise managed to sustain itself without additional investments from external sources. KSNICS was managed in an informal manner by the protagonist, Krishna Kumar. After almost 30 years of KSNICS’s existence, in 2021, Kumar felt that they should diversify into the restaurant business by establishing an authentic “Iyengar” restaurant. In spite of the unpredictable market and the challenging times due to the COVID-19 pandemic, he had somehow managed to sustain his catering business. However, given the informal methods through which he operated his catering services and in the post-COVID-19 pandemic scenario, would it be prudent on his part to establish a restaurant?

Complexity academic level

This case study is suitable for post-graduate- and executive-level instruction in courses such as managerial skills, entrepreneurship and human resource management. In managerial skills course, it can be used for applying SWOT analysis from a particular perspective for effective decision-making. In entrepreneurship-related courses, it can be used to introduce aspects such as entrepreneurship orientation, effectuation and decision-making. In organizational behaviour and HR-related courses, it can be used to highlight how employees can be trained and motivated and how businesses can be sustained within the scale, especially during challenging times. Irrespective of the course, the IBP discussion would remain a constant point of reference because that was the context under which the current business was operating.

Supplementary material

Teaching notes are available for educators only.

Subject code

CSS 3: Entrepreneurship.

Details

Emerald Emerging Markets Case Studies, vol. 14 no. 1
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 7 February 2022

Muralidhar Vaman Kamath, Shrilaxmi Prashanth, Mithesh Kumar and Adithya Tantri

The compressive strength of concrete depends on many interdependent parameters; its exact prediction is not that simple because of complex processes involved in strength…

Abstract

Purpose

The compressive strength of concrete depends on many interdependent parameters; its exact prediction is not that simple because of complex processes involved in strength development. This study aims to predict the compressive strength of normal concrete and high-performance concrete using four datasets.

Design/methodology/approach

In this paper, five established individual Machine Learning (ML) regression models have been compared: Decision Regression Tree, Random Forest Regression, Lasso Regression, Ridge Regression and Multiple-Linear regression. Four datasets were studied, two of which are previous research datasets, and two datasets are from the sophisticated lab using five established individual ML regression models.

Findings

The five statistical indicators like coefficient of determination (R2), mean absolute error, root mean squared error, Nash–Sutcliffe efficiency and mean absolute percentage error have been used to compare the performance of the models. The models are further compared using statistical indicators with previous studies. Lastly, to understand the variable effect of the predictor, the sensitivity and parametric analysis were carried out to find the performance of the variable.

Originality/value

The findings of this paper will allow readers to understand the factors involved in identifying the machine learning models and concrete datasets. In so doing, we hope that this research advances the toolset needed to predict compressive strength.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 2
Type: Research Article
ISSN: 1726-0531

Keywords

Open Access
Article
Publication date: 15 December 2023

Chon Van Le and Uyen Hoang Pham

This paper aims mainly at introducing applied statisticians and econometricians to the current research methodology with non-Euclidean data sets. Specifically, it provides the…

Abstract

Purpose

This paper aims mainly at introducing applied statisticians and econometricians to the current research methodology with non-Euclidean data sets. Specifically, it provides the basis and rationale for statistics in Wasserstein space, where the metric on probability measures is taken as a Wasserstein metric arising from optimal transport theory.

Design/methodology/approach

The authors spell out the basis and rationale for using Wasserstein metrics on the data space of (random) probability measures.

Findings

In elaborating the new statistical analysis of non-Euclidean data sets, the paper illustrates the generalization of traditional aspects of statistical inference following Frechet's program.

Originality/value

Besides the elaboration of research methodology for a new data analysis, the paper discusses the applications of Wasserstein metrics to the robustness of financial risk measures.

Book part
Publication date: 14 December 2023

Prashanth Beleya and Geetha Veerappan

Seaports are significant nodal points in any supply chain network. Accordingly, the need to consistently upgrade and further develop processes would bode well for the maritime…

Abstract

Seaports are significant nodal points in any supply chain network. Accordingly, the need to consistently upgrade and further develop processes would bode well for the maritime industry and nations competitiveness. There has been a change in the pattern by which green issues have become significant themes to the global sea transportation players. Developed nations have been the leaders in pursuing green options for future development. This leads to developing nations pursuing the green agenda to stay competitive. As such, Malaysia's desire of being the preferred sea nodal point in Southeast Asia lies in its abilities of seeking innovative processes and business opportunities through green principles. This chapter will focus on:

  • • Introducing Malaysia's seaport industry.

  • • A review of green management at seaports.

  • • The current state of green management implementation at Malaysia's federal ports.

  • • Challenges and opportunities for Malaysia's federal ports in pursuing green management.

• Introducing Malaysia's seaport industry.

• A review of green management at seaports.

• The current state of green management implementation at Malaysia's federal ports.

• Challenges and opportunities for Malaysia's federal ports in pursuing green management.

Details

Entrepreneurship and Green Finance Practices
Type: Book
ISBN: 978-1-80455-679-5

Keywords

Article
Publication date: 6 March 2024

Qiuchen Zhao, Xue Li, Junchao Hu, Yuehui Jiang, Kun Yang and Qingyuan Wang

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under…

Abstract

Purpose

The purpose of this paper is to determine the ultra-high cycle fatigue behavior and ultra-slow crack propagation behavior of selective laser melting (SLM) AlSi7Mg alloy under as-built conditions.

Design/methodology/approach

Constant amplitude and two-step variable amplitude fatigue tests were carried out using ultrasonic fatigue equipment. The fracture surface of the failure specimen was quantitatively analyzed by scanning electron microscope (SEM).

Findings

The results show that the competition of surface and interior crack initiation modes leads to a duplex S–N curve. Both manufacturing defects (such as the lack of fusion) and inclusions can act as initially fatal fatigue microcracks, and the fatigue sensitivity level decreases with the location, size and type of the maximum defects.

Originality/value

The research results play a certain role in understanding the ultra-high cycle fatigue behavior of additive manufacturing aluminum alloys. It can provide reference for improving the process parameters of SLM technology.

Details

International Journal of Structural Integrity, vol. 15 no. 2
Type: Research Article
ISSN: 1757-9864

Keywords

Article
Publication date: 29 February 2024

Jie Wan, Biao Chen, Jianghua Shen, Katsuyoshi Kondoh, Shuiqing Liu and Jinshan Li

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during…

Abstract

Purpose

The metallic alloys and their components fabricated via laser powder bed fusion (LPBF) suffer from the microvoids formed inevitably due to the extreme solidification rate during fabrication, which are impossible to be removed by heat treatment. This paper aims to remove those microvoids in as-built AlSi10Mg alloys by hot forging and enhance their mechanical properties.

Design/methodology/approach

AlSi10Mg samples were built using prealloyed powder with a set of optimized LPBF parameters, viz. 350 W of laser power, 1,170 mm/s of scan speed, 50 µm of layer thickness and 0.24 mm of hatch spacing. As-built samples were preheated to 430°C followed by immediate pressing with two different thickness reductions of 10% and 35%. The effect of hot forging on the microstructure was analyzed by means of X-ray diffraction, scanning electron microscopy, electron backscattered diffraction and transmission electron microscopy. Tensile tests were performed to reveal the effect of hot forging on the mechanical properties.

Findings

By using hot forging, the large number of microvoids in both as-built and post heat-treated samples were mostly healed. Moreover, the Si particles were finer in forged condition (∼150 nm) compared with those in heat-treated condition (∼300 nm). Tensile tests showed that compared with heat treatment, the hot forging process could noticeably increase tensile strength at no expense of ductility. Consequently, the toughness (integration of tensile stress and strain) of forged alloy increased by ∼86% and ∼24% compared with as-built and heat-treated alloys, respectively.

Originality/value

Hot forging can effectively remove the inevitable microvoids in metals fabricated via LPBF, which is beneficial to the mechanical properties. These findings are inspiring for the evolution of the LPBF technique to eliminate the microvoids and boost the mechanical properties of metals fabricated via LPBF.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 18 April 2024

S. Sarkar

Globally, consumer’s inclination towards functional foods had noticed due to their greater health consciousness coupled with enhanced health-care cost. The fact that probiotics…

Abstract

Purpose

Globally, consumer’s inclination towards functional foods had noticed due to their greater health consciousness coupled with enhanced health-care cost. The fact that probiotics could promote a healthier gut microbiome led projection of probiotic foods as functional foods and had emerged as an important dietary strategy for improved human health. It had established that ice cream was a better carrier for probiotics than fermented milked due to greater stability of probiotics in ice cream matrix. Global demand for ice cream boomed and probiotic ice cream could have been one of the most demanded functional foods. The purpose of this paper was to review the technological aspects and factors affecting probiotic viability and to standardize methodology to produce functional probiotic ice cream.

Design/methodology/approach

Attempt was made to search the literature (review and researched papers) to identify diverse factors affecting the probiotic viability and major technological challenge faced during formulation of probiotic ice cream. Keywords used for data searched included dairy-based functional foods, ice cream variants, probiotic ice cream, factors affecting probiotic viability and health benefits of probiotic ice cream.

Findings

Retention of probiotic viability at a level of >106 cfu/ml is a prerequisite for functional probiotic ice creams. Functional probiotic ice cream could have been produced with the modification of basic mix and modulating technological parameters during processing and freezing. Functionality can be further enhanced with the inclusion of certain nutraceutical components such as prebiotics, antioxidant, phenolic compounds and dietary fibres. Based upon reviewed literature, suggested method for the manufacture of functional probiotic ice cream involved freezing of a probiotic ice cream mix obtained by blending 10% probiotic fermented milk with 90% non-fermented plain ice cream mix for higher probiotic viability. Probiotic ice cream with functional features, comparable with traditional ice cream in terms of technological and sensory properties could be produced and can crop up as a novel functional food.

Originality/value

Probiotic ice cream with functional features may attract food manufacturers to cater health-conscious consumers.

Details

Nutrition & Food Science , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0034-6659

Keywords

Article
Publication date: 1 March 2024

Asif Ur Rehman, Pedro Navarrete-Segado, Metin U. Salamci, Christine Frances, Mallorie Tourbin and David Grossin

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective…

Abstract

Purpose

The consolidation process and morphology evolution in ceramics-based additive manufacturing (AM) are still not well-understood. As a way to better understand the ceramic selective laser sintering (SLS), a dynamic three-dimensional computational model was developed to forecast thermal behavior of hydroxyapatite (HA) bioceramic.

Design/methodology/approach

AM has revolutionized automotive, biomedical and aerospace industries, among many others. AM provides design and geometric freedom, rapid product customization and manufacturing flexibility through its layer-by-layer technique. However, a very limited number of materials are printable because of rapid melting and solidification hysteresis. Melting-solidification dynamics in powder bed fusion are usually correlated with welding, often ignoring the intrinsic properties of the laser irradiation; unsurprisingly, the printable materials are mostly the well-known weldable materials.

Findings

The consolidation mechanism of HA was identified during its processing in a ceramic SLS device, then the effect of the laser energy density was studied to see how it affects the processing window. Premature sintering and sintering regimes were revealed and elaborated in detail. The full consolidation beyond sintering was also revealed along with its interaction to baseplate.

Originality/value

These findings provide important insight into the consolidation mechanism of HA ceramics, which will be the cornerstone for extending the range of materials in laser powder bed fusion of ceramics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 30 January 2024

Ravikantha Prabhu, Sharun Mendonca, Pavana Kumara Bellairu, Rudolf Charles DSouza and Thirumaleshwara Bhat

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a…

Abstract

Purpose

The purpose of this study is to investigate the impact of titanium oxide (TiO2) filler on the abrasive wear properties of bamboo fiber reinforced epoxy composites (BFRCs) using a Taguchi approach. The study aims to enhance the abrasive wear resistance of these composites by introducing TiO2 filler as a potential reinforcement, thus contributing to the development of sustainable and environmentally friendly materials.

Design/methodology/approach

This study focuses on the fabrication of epoxy/bamboo composites infused with TiO2 particles within the Wt.% range of 0–8 Wt.% using hand layup techniques. The resulting composites were subjected to wear testing according to ASTM G99-05 standards. Statistical analysis of the wear results was carried out using the Taguchi design of experiments (DOE). Additionally, an analysis of variance (ANOVA) was used to determine the influential control factors impacting the specific wear rate (SWR) and coefficient of friction (COF).

Findings

The study illuminates how integrating TiO2 filler enhances abrasive wear in epoxy/bamboo composites. Statistical analysis of SWR highlights abrasive grit size (grit) as the most influential factor, followed by normal load, Wt.% of TiO2 and sliding distance. Analysis of the COF identifies normal load as the primary influential factor, followed by grit, Wt.% of TiO2 and sliding distance. The Taguchi predictive model closely aligns with experimental results, validating its reliability. The morphological study revealed significant differences between the unfilled and TiO2-filled composites. The inclusion of TiO2 improved wear resistance, as evidenced by reduced surface damage and wear debris.

Originality/value

This research paper aims to integrate TiO2 filler and bamboo fibers to create an innovative hybrid composite material. TiO2 micro and nanoparticles show promise as filler materials, contributing to improved tribological properties of epoxy composites. The utilization of Taguchi’s DOE and ANOVA for statistical analysis provides valuable guidance for academic researchers and practitioners in optimizing control variables, especially in the context of natural fiber reinforced composites.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

1 – 10 of 16