Search results

1 – 2 of 2
Article
Publication date: 1 July 2006

Onno C. Goemans, Ken Goldberg and A. Frank van der Stappen

Proposes a simple bowl feeder primitive, consisting of one horizontally mounted convex polygonal metal “blade” that can feed a broad class of three‐dimensional polyhedral parts by…

Abstract

Purpose

Proposes a simple bowl feeder primitive, consisting of one horizontally mounted convex polygonal metal “blade” that can feed a broad class of three‐dimensional polyhedral parts by reorienting and rejecting all but those in a desired orientation. Owing to its simplicity, the proposed primitive allows for the development of methods to automate its design process.

Design/methodology/approach

Presents a computational geometric approach to construct the solution space for a given part and then use this space to report all designs that feed the part.

Findings

Given a polyhedral part and its center of mass as input, the complete algorithm identifies all single blade solutions that feed the part. The output is either the set of all valid blade designs or a notification that the part cannot be fed using a single blade.

Research limitations/implications

Aims to take a first step in the design of complete algorithms for three‐dimensional parts in the context of vibratory bowls. Future research encompasses the relaxation of several simplifying assumptions with regard to the physical modeling of the motion and interaction with the part.

Practical implications

Algorithms like the one proposed can be applied to generate an initial vibratory bowl design. The strength of our algorithm lies in its completeness which means that it identifies the complete universe of all possible designs. Such a rigorous exploration can neither be accomplished through human trail‐and‐error nor through heuristic approaches to automated design.

Originality/value

Proposes the first complete algorithm for automated design of a 3D part manipulator for vibratory bowls, which may serve as a building block for fully automated bowl design.

Details

Assembly Automation, vol. 26 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 29 July 2014

S. Udhayakumar, P.V. Mohanram, S. Yeshwanth, Manas Ranjan Biswal and A. Sabareeswaran

The purpose of this paper is to discuss a linear vibratory part feeder for handling brake liners, typical sector-shaped components. Part feeders have been used in the industries…

Abstract

Purpose

The purpose of this paper is to discuss a linear vibratory part feeder for handling brake liners, typical sector-shaped components. Part feeders have been used in the industries for a long time to present the parts in a desired orientation. Berretty et al. (1999) discussed a class of mechanical filters that are capable of removing polygonal sections from the track of the feeder which are referred to as traps. The traps eliminate or reorient the parts until they reach the final desired orientation. A part feeder was developed using traps, to reorient the sector-shaped part to desired orientation. The desired orientation was the most probable natural resting orientation. The trap was mounted on a linear vibratory feeder. The adaptive part feeder developed was capable of identifying the size of the incoming part and adjust the trap to accommodate that. This set-up eliminates the use of different traps for different-sized sector-shaped parts and wastage of productive time in changing the traps for different sizes. A regression model was developed to predict the conveying velocity of part on the feeder.

Design/methodology/approach

A part feeder was developed using traps, to reorient the sector-shaped part to desired orientation. Acrylic material was found to be suitable for trap compared to aluminium. The adaptive part feeder developed was capable of identifying the size of the incoming part using proximity sensors. Depending on the size of the incoming part, the track width was adjusted dynamically with the help of a stepper motor, rack and pinion arrangement. A regression model was developed to predict the conveying velocity.

Findings

Typical brake liners in the size range of 40-60 mm (radius) were considered for developing the adaptive part feeder. Based on performance studies, the acrylic trap was found better than aluminium traps. The appropriate frequency and amplitude of vibration for maximum conveying velocity of the adaptive part feeder were found experimentally. Regression equation was developed to determine the conveying velocity based on input frequency and amplitude. The regression results were found to be in close agreement with the experimental results.

Research limitations/implications

The developed part feeder is suitable for handling sector-shaped parts only.

Originality/value

This paper demonstrates an inexpensive adaptive part feeding device for handling sector-shaped parts which can be extended for handling other asymmetric parts also.

Details

Assembly Automation, vol. 34 no. 3
Type: Research Article
ISSN: 0144-5154

Keywords

Access

Year

Content type

Article (2)
1 – 2 of 2