Search results

1 – 10 of 639
Article
Publication date: 25 February 2021

Leo Lukose and Tanmay Basak

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the…

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 September 2016

M.C. Raju, S.V.K. Varma and A.J. Chamkha

The purpose of this paper is to present an analytical study for a problem of unsteady free convection boundary layer flow past a periodically accelerated vertical plate with…

Abstract

Purpose

The purpose of this paper is to present an analytical study for a problem of unsteady free convection boundary layer flow past a periodically accelerated vertical plate with Newtonian heating (NH).

Design/methodology/approach

The equations governing the flow are studied in the closed form by using the Laplace transform technique. The effects of various physical parameters are studied through graphs and the expressions for skin friction, Nusselt number and Sherwood number are also derived and discussed numerically.

Findings

It is observed that velocity, concentration and skin friction decrease with the increasing values of Sc whereas temperature distribution decreases in the increase in Pr in the presence of NH.

Research limitations/implications

This study is limited to a Newtonian fluid. This can be extended for non-Newtonian fluids.

Practical implications

Heat and mass transfer frequently occurs in chemically processed industries, distribution of temperature and moisture over agricultural fields, dispersion of fog and environment pollution and polymer production.

Social implications

Free convection flow of coupled heat and mass transfer occurs due to the temperature and concentration differences in the fluid as a result of driving forces. For example, in atmospheric flows, thermal convection resulting from heating of the earth by sunlight is affected differences in water vapor concentration.

Originality/value

The authors have studied heat and mass transfer effects on unsteady free convection boundary layer flow past a periodically accelerated vertical surface with NH, where the heat transfer rate from the bounding surface with a finite heat capacity is proportional to the local surface temperature, and which is usually termed as conjugate convective flow. The equations governing the flow are studied in the closed form by using the Laplace transform technique. The effects of various physical parameters are studied through graphs and the expression for skin friction also derived and discussed.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 17 December 2019

C. Sulochana and S.R. Aparna

The purpose of this paper is to analyze heat and mass transport mechanism of unsteady MHD thin film flow of aluminium–copper/water hybrid nanofluid influenced by thermophoresis…

Abstract

Purpose

The purpose of this paper is to analyze heat and mass transport mechanism of unsteady MHD thin film flow of aluminium–copper/water hybrid nanofluid influenced by thermophoresis, Brownian motion and radiation.

Design/methodology/approach

The authors initially altered the time dependent set of mathematical equations into dimensionless form of equations by using apposite transmutations. These equations are further solved numerically by deploying Runge–Kutta method along with shooting technique.

Findings

Plots and tables for skin friction coefficient, Nusselt number, Sherwood number along with velocity, temperature and concentration profiles against pertinent non-dimensional parameters are revealed. The study imparts that aluminium–copper hybrid nanoparticles facilitate higher heat transfer rate compared to mono nanoparticles. It is noteworthy to disclose that an uplift in thermophoresis and Brownian parameter depreciates heat transfer rate, while concentration profiles boost with an increase in thermophoretic parameter.

Research limitations/implications

The current study targets to investigate heat transfer characteristics of an unsteady thin film radiative flow of water-based aluminium and copper hybrid nanofluid. The high thermal and electrical conductivities, low density and corrosion resistant features of aluminium and copper with their wide range of industrial applications like power generation, telecommunication, automobile manufacturing, mordants in leather tanning, etc., have prompted us to instil these particles in the present study.

Practical implications

The present study has many practical implications in the industrial and manufacturing processes working on the phenomena like heat transfer, magnetohydrodynamics, thermal radiation, nanofluids, hybrid nanofluids with special reference to aluminium and copper particles.

Originality/value

To the best extent of the authors’ belief so far no attempt is made to inspect the flow, thermal and mass transfer of water-based hybridized aluminium and copper nanoparticles with Brownian motion and thermophoresis.

Details

Multidiscipline Modeling in Materials and Structures, vol. 16 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 7 August 2017

Thirupathi Thumma, A. Chamkha and Siva Reddy Sheri

This paper aims to focus on the mathematical modeling of magnetohydrodynamic natural convective boundary layer flow of nanofluids past a stationary and moving inclined porous…

Abstract

Purpose

This paper aims to focus on the mathematical modeling of magnetohydrodynamic natural convective boundary layer flow of nanofluids past a stationary and moving inclined porous plate considering temperature and concentration gradients with suction effects.

Design/methodology/approach

The transformed non-dimensional and coupled governing partial differential equations are solved numerically using the finite element method.

Findings

The obtained numerical results for physical governing parameters on the velocity, temperature and concentration distributions are exemplified graphically and presented quantitatively. The boundary layer thickness increased with the increasing values of Soret, Dufour and Grashof numbers, while the thickness of boundary layer decreased with increasing values of suction for both stationary and moving plate cases. The primary and secondary velocity profiles are decreasing with an angle of inclination for moving plate and inclination has no significant effect for the stationary plate. An increase of the Soret number and Dufour number tend to increase the heat and mass transfer, while an increase of suction reduces the heat and mass transfer.

Originality/value

The problem is an important contribution to the field of nanofluid science and technology and is relevant to high temperature rotating chemical engineering systems exploiting magnetized nanofluids. This study is relatively original in nanofluids.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2018

Younes Menni, Ahmed Azzi and A. Chamkha

This paper aims to report the results of numerical analysis of turbulent fluid flow and forced-convection heat transfer in solar air channels with baffle-type attachments of…

Abstract

Purpose

This paper aims to report the results of numerical analysis of turbulent fluid flow and forced-convection heat transfer in solar air channels with baffle-type attachments of various shapes. The effect of reconfiguring baffle geometry on the local and average heat transfer coefficients and pressure drop measurements in the whole domain investigated at constant surface temperature condition along the top and bottom channels’ walls is studied by comparing 15 forms of the baffle, which are simple (flat rectangular), triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, double V (or W), Z, T, G and epsilon (or e)-shaped, with the Reynolds number changing from 12,000 to 32,000.

Design/methodology/approach

The baffled channel flow model is controlled by the Reynolds-averaged Navier–Stokes equations, besides the k-epsilon (or k-e) turbulence model and the energy equation. The finite volume method, by means of commercial computational fluid dynamics software FLUENT is used in this research work.

Findings

Over the range investigated, the Z-shaped baffle gives a higher thermal enhancement factor than with simple, triangular, trapezoidal, cascaded rectangular-triangular, diamond, arc, corrugated, +, S, V, W, T, G and e-shaped baffles by about 3.569-20.809; 3.696-20.127; 3.916-20.498; 1.834-12.154; 1.758-12.107; 7.272-23.333; 6.509-22.965; 8.917-26.463; 8.257-23.759; 5.513-18.960; 8.331-27.016; 7.520-26.592; 6.452-24.324; and 0.637-17.139 per cent, respectively. Thus, the baffle of Z-geometry is considered as the best modern model of obstacles to significantly improve the dynamic and thermal performance of the turbulent airflow within the solar channel.

Originality/value

This analysis reports an interesting strategy to enhance thermal transfer in solar air channels by use of attachments with various shapes

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 March 2018

P. Sudarsan A. Reddy and A. Chamkha

This paper aims to understand the influence of velocity slip, nanoparticle volume fraction, chemical reaction and non-linear thermal radiation on MHD three-dimensional heat and…

167

Abstract

Purpose

This paper aims to understand the influence of velocity slip, nanoparticle volume fraction, chemical reaction and non-linear thermal radiation on MHD three-dimensional heat and mass transfer boundary layer flow over a stretching sheet filled with water-based alumina nanofluid. To get more meaningful results, the authors have taken nonlinear thermal radiation in the heat transfer process.

Design/methodology/approach

Suitable similarity variables are introduced to convert governing partial differential equations into the set of ordinary differential equations, and are solved numerically using a versatile, extensively validated finite element method with Galerkin’s weighted residual simulation. The velocity, temperature and concentration profiles of nanoparticles as well as skin friction coefficient, Nusselt number and Sherwood number for different non-dimensional parameters such as volume fraction, magnetic, radiation and velocity slip parameters as well as the Prandtl number are examined in detail, and are presented through plots and tables.

Findings

It is noticed that the rate of heat transfer enhances with higher values of nanoparticle volume fraction parameter. It is worth mentioning that the heat transfer rates improve as the values of increase. Increasing values of M, R, θw and β decelerates the thickness of the thermal boundary layer in the fluid regime. The heat transfer rates decelerate as the values of suction parameter increase.

Originality/value

The authors have written this paper based on the best of their knowledge on heat and mass transfer analysis of nanofluids. The information in this paper is new and not copied from any other sources.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 4 December 2018

Younes Menni, Ahmed Azzi, Ali J. Chamkha and Souad Harmand

The purpose of this paper is to carry out a numerical study on the dynamic and thermal behavior of a fluid with a constant property and flowing turbulently through a…

Abstract

Purpose

The purpose of this paper is to carry out a numerical study on the dynamic and thermal behavior of a fluid with a constant property and flowing turbulently through a two-dimensional horizontal rectangular channel. The upper surface was put in a constant temperature condition, while the lower one was thermally insulated. Two transverse, solid-type obstacles, having different shapes, i.e. flat rectangular and V-shaped, were inserted into the channel and fixed to the top and bottom walls of the channel, in a periodically staggered manner to force vortices to improve the mixing, and consequently the heat transfer. The flat rectangular obstacle was put in the first position and was placed on the hot top wall of the channel. However, the second V-shaped obstacle was placed on the insulated bottom wall, at an attack angle of 45°; its position was varied to find the optimum configuration for optimal heat transfer.

Design/methodology/approach

The fluid is considered Newtonian, incompressible with constant properties. The Reynolds averaged Navier–Stokes equations, along with the standard k-epsilon turbulence model and the energy equation, are used to control the channel flow model. The finite volume method is used to integrate all the equations in two-dimensions; the commercial CFD software FLUENT along with the SIMPLE-algorithm is used for pressure-velocity coupling. Various values of the Reynolds number and obstacle spacing were selected to perform the numerical runs, using air as the working medium.

Findings

The channel containing the flat fin and the 45° V-shaped baffle with a large Reynolds number gave higher heat transfer and friction loss than the one with a smaller Reynolds number. Also, short separation distances between obstacles provided higher values of the ratios Nu/Nu0 and f/f0 and a larger thermal enhancement factor (TEF) than do larger distances.

Originality/value

This is an original work, as it uses a novel method for the improvement of heat transfer in completely new flow geometry.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 10
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 September 2019

S. Hoseinzadeh, P.S. Heyns and H. Kariman

The purpose of this paper is to investigate the heat transfer of laminar and turbulent pulsating Al203/water nanofluid flow in a two-dimensional channel. In the laminar flow…

Abstract

Purpose

The purpose of this paper is to investigate the heat transfer of laminar and turbulent pulsating Al203/water nanofluid flow in a two-dimensional channel. In the laminar flow range, with increasing Reynolds number (Re), the velocity gradient is increased. Also, the Nusselt number (Nu) is increased, which causes increase in the overall heat transfer rate. Additionally, in the change of flow regime from laminar to turbulent, average thermal flux and pulsation range are increased. Also, the effect of different percentage of Al2O3/water nanofluid is investigated. The results show that the addition of nanofluids improve thermal performance in channel, but the using of nanofluid causes a pressure drop in the channel.

Design/methodology/approach

The pulsatile flow and heat transfer in a two-dimensional channel were investigated.

Findings

The numerical results show that the Al2O3/Water nanofluid has a significant effect on the thermal properties of the different flows (laminar and turbulent) and the average thermal flux and pulsation ranges are increased in the change of flow regime from laminar to turbulent. Also, the addition of nanofluid improves thermal performance in channels.

Originality/value

The originality of this work lies in proposing a numerical analysis of heat transfer of pulsating Al2O3/Water nanofluid flow -with different percentages- in the two-dimensional channel while the flow regime change from laminar to turbulent.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 30 October 2018

Ali Rahimi Gheynani, Omid Ali Akbari, Majid Zarringhalam, Gholamreza Ahmadi Sheikh Shabani, Abdulwahab A. Alnaqi, Marjan Goodarzi and Davood Toghraie

Although many studies have been conducted on the nanofluid flow in microtubes, this paper, for the first time, aims to investigate the effects of nanoparticle diameter and…

Abstract

Purpose

Although many studies have been conducted on the nanofluid flow in microtubes, this paper, for the first time, aims to investigate the effects of nanoparticle diameter and concentration on the velocity and temperature fields of turbulent non-Newtonian Carboxymethylcellulose (CMC)/copper oxide (CuO) nanofluid in a three-dimensional microtube. Modeling has been done using low- and high-Reynolds turbulent models. CMC/CuO was modeled using power law non-Newtonian model. The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices.

Design/methodology/approach

Present numerical simulation was performed with finite volume method. For obtaining higher accuracy in the numerical solving procedure, second-order upwind discretization and SIMPLEC algorithm were used. For all Reynolds numbers and volume fractions, a maximum residual of 10−6 is considered for saving computer memory usage and the time for the numerical solving procedure.

Findings

In constant Reynolds number and by decreasing the diameter of nanoparticles, the convection heat transfer coefficient increases. In Reynolds numbers of 2,500, 4,500 and 6,000, using nanoparticles with the diameter of 25 nm compared with 50 nm causes 0.34 per cent enhancement of convection heat transfer coefficient and Nusselt number. Also, in Reynolds number of 2,500, by increasing the concentration of nanoparticles with the diameter of 25 nm from 0.5 to 1 per cent, the average Nusselt number increases by almost 0.1 per cent. Similarly, In Reynolds numbers of 4,500 and 6,000, the average Nusselt number increases by 1.8 per cent.

Research limitations/implications

The numerical simulation was carried out for three nanoparticle diameters of 25, 50 and 100 nm with three Reynolds numbers of 2,500, 4,500 and 6,000. Constant heat flux is on the channel, and the inlet fluid becomes heated and exists from it.

Practical implications

The authors obtained interesting results, which can be helpful for engineers and researchers that work on cooling of electronic devices such as LED, VLSI circuits and MEMS, as well as similar devices.

Originality/value

This manuscript is an original work, has not been published and is not under consideration for publication elsewhere. About the competing interests, the authors declare that they have no competing interests.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 18 August 2022

Dipak Kumar Mandal, Nirmalendu Biswas, Nirmal K. Manna, Rama Subba Reddy Gorla and Ali J. Chamkha

This study aims to numerically examine the influence of various geometric parameters of a novel W-shaped porous cavity undergoing hybrid nanofluid-based magnetohydrodynamic mixed…

295

Abstract

Purpose

This study aims to numerically examine the influence of various geometric parameters of a novel W-shaped porous cavity undergoing hybrid nanofluid-based magnetohydrodynamic mixed convection. The W-shaped cavity is modified from the classical trapezoidal cavity by constructing a triangular shape at its bottom. This cavity is isothermally active at the bottom, with different numbers and heights of the triangular peak (or undulation). The heated hybrid nanofluid (Cu–Al2O3–H2O) flow is cooled through the translating top wall. Inclined sidewalls are thermally insulated. To compare the impacts of change in geometric parameters, a square cavity under similar boundary conditions is also simulated. This study is carried out systematically addressing the various influences from a range of parameters like side angles (γ), number (m) and height (λ) of the bottom undulation, Reynolds number (Re), Richardson number (Ri), Darcy number (Da), Hartmann number (Ha), hybrid nanoparticles volume fraction (φ) on the overall thermal performance of the cavity.

Design/methodology/approach

Applying the finite volume approach, the transport equations involving multiphysical conditions like porous substance, hybrid nanofluid, magnetic field and shearing force are solved numerically by using a written FORTRAN-based code following the SIMPLE algorithm. The algebraic equations are solved over all the control volumes in an iterative process using the alternate direction implicit scheme and the tri-diagonal matrix algorithm. The converged solution of the iterative process is obtained when the relative error levels satisfy the convergence criterion of 10–8 and 10–10 for the maximum residuals and the mass defect, respectively.

Findings

It is revealed that an increase in the bottom undulation height always improves the thermal energy transfer despite the reduction of fluid volume. Thermal energy transfer significantly depends on the heating and cooling surface lengths, fluid volume in the cavity and the magnitude of the bottom undulation height of the W-shaped cavity. With the increase in bottom undulation height, effective heating length increases by ∼28%, which leads to a ∼15% reduction in the effective volume of the working fluid and a gain in heat transfer by ∼56.48%. In general, the overall thermal energy transport is improved by increasing Re, Ri and Da; whereas it is suppressed by increasing Ha.

Research limitations/implications

There are many opportunities for future research experimentally or numerically, considering different curvature effects, orientations of the geometry, working fluids, boundary conditions, etc. Furthermore, this study could be extended by considering unsteady flow or turbulent flow.

Practical implications

In many modern systems/processes pertaining to materials processing, continuous casting, food processing, chemical reactors, biomedical applications, etc. fine control in the transport process is a major concern. The findings of this analysis can effectively be useful for other applications for getting more control features in terms of achieving the operational objectives. The approach of the system analysis (considering geometrical size parameters to delve into the underlying transport physics) and the obtained simulated results presented in the work can usefully be applicable to similar thermal systems/devices such as materials processing, thermal mixing, chemical reactors, heat exchangers, etc.

Originality/value

From the well-documented and vast pool of literature survey, it is understood that there exists no such investigation on the considered geometry and study. This study contributes a lot to understanding magnetic field moderated thermofluid flow of a hybrid nanofluid in a porous medium filled W-shaped cavity, in consideration of different geometrical shape parameters (undulation peak numbers at bottom wall, peak heights, side angles and heating and cooling length). Findings brought by this study provide great insights into the design and operation under various ranges of multiphysical thermofluid-flow processing phenomena.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of 639