Search results

1 – 10 of 972
Article
Publication date: 22 August 2022

Manikandan Nachimuthu and Rajesh P.K.

This paper aims to provide a review of four-dimensional (4D) printing of shape memory polymers using inkjet printing technology. 4D printing refers to the three-dimensional (3D…

Abstract

Purpose

This paper aims to provide a review of four-dimensional (4D) printing of shape memory polymers using inkjet printing technology. 4D printing refers to the three-dimensional (3D) printing of smart materials capable of shape change or function modification with respect to time when activated by external stimuli. Inkjet printing has gained popularity because of the technical advantages such as non-contact deposition, multi-material printing, high resolution, high speed of printing and minimal post processing. This review will serve as a platform for understanding the inkjet 4D printing process and the shape memory capability of the polymer structures printed using inkjet printing.

Design/methodology/approach

The approach used in this review was to search for and review research works related to inkjet 4D printing of shape memory polymers. The search period was limited for the duration 2013 to 2021 as the 4D printing technology came into light later in 2013. With the review of inkjet 4D printing of shape memory polymers, the shape memory capability of the inkjet-printed structures were also studied.

Findings

With the available research documents, it was found that the inkjet 4D printing technology gained momentum from 2016, three years after the introduction of the 4D printing technology. The key findings of this review show that inkjet 4D printing of shape memory polymers were primarily performed using commercial inkjet printers and polymer inks linked to the printers. Even though the inkjet printing technology is matured enough to print multiple materials, development of shape memory polymer inks for inkjet printability remains complex. To realize the full potential of inkjet 4D printing, novel polymer inks specific for inkjet printing needs development.

Research limitations/implications

The major limitation to this review was the availability of research papers for review. Even though inkjet printing technology has grown to popularity in the graphics printing and publishing industry since its inception in the 19th century, the technology still needs to evolve in the printing of 3D structures due to the limitations in synthesizing inks that are inkjet printable. However, this research will serve as a platform for understating the current status of inkjet 4D printing and the limitations of the technology.

Originality/value

This review focuses only on the inkjet 4D printing of shape memory polymers among the generally summarized 4D printing review papers available. Currently, 4D printing of shape memory polymers is carried out using only the commercially available polymer printers. Also, researchers do not have the flexibility of modifying the polymer inks linked to the printers. This review can spur more research into the development of novel polymer inks specific for inkjet printing.

Details

Rapid Prototyping Journal, vol. 29 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 28 January 2020

John Carrell, Garrett Gruss and Elizabeth Gomez

This paper aims to provide a review of four-dimensional (4D) printing using fused-deposition modeling (FDM). 4D printing is an emerging innovation in (three-dimensional) 3D…

1299

Abstract

Purpose

This paper aims to provide a review of four-dimensional (4D) printing using fused-deposition modeling (FDM). 4D printing is an emerging innovation in (three-dimensional) 3D printing that encompasses active materials in the printing process to create not only a 3D object but also a 3D object that can perform an active function. FDM is the most accessible form of 3D printing. By providing a review of 4D printing with FDM, this paper has the potential in educating the many FDM 3D printers in an additional capability with 4D printing.

Design/methodology/approach

This is a review paper. The approach was to search for and review peer-reviewed papers and works concerning 4D printing using FDM. With this discussion of the shape memory effect, shape memory polymers and FDM were also made.

Findings

4D printing has become a burgeoning area in addivitive manufacturing research with many papers being produced within the past 3-5 years. This is especially true for 4D printing using FDM. The key findings from this review show the materials and material composites used for 4D printing with FDM and the limitations with 4D printing with FDM.

Research limitations/implications

Limitations to this paper are with the availability of papers for review. 4D printing is an emerging area of additive manufacturing research. While FDM is a predominant method of 3D printing, it is not a predominant method for 4D printing. This is because of the limitations of FDM, which can only print with thermoplastics. With the popularity of FDM and the emergence of 4D printing, however, this review paper will provide key resources for reference for users that may be interested in 4D printing and have access to a FDM printer.

Practical implications

Practically, FDM is the most popular method for 3D printing. Review of 4D printing using FDM will provide a necessary resource for FDM 3D printing users and researchers with a potential avenue for design, printing, training and actuation of active parts and mechanisms.

Social implications

Continuing with the popularity of FDM among 3D printing methods, a review paper like this can provide an initial and simple step into 4D printing for researchers. From continued research, the potential to engage general audiences becomes more likely, especially a general audience that has FDM printers. An increase in 4D printing could potentially lead to more designs and applications of 4D printed devices in impactful fields, such as biomedical, aerospace and sustainable engineering. Overall, the change and inclusion of technology from 4D printing could have a potential social impact that encourages the design and manufacture of such devices and the treatment of said devices to the public.

Originality/value

There are other 4D printing review papers available, but this paper is the only one that focuses specifically on FDM. Other review papers provide brief commentary on the different processes of 4D printing including FDM. With the specialization of 4D printing using FDM, a more in-depth commentary results in this paper. This will provide many FDM 3D printing users with additional knowledge that can spur more creative research in 4D printing. Further, this paper can provide the impetus for the practical use of 4D printing in more general and educational settings.

Details

Rapid Prototyping Journal, vol. 26 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 2 August 2021

Shubham Shankar Mohol and Varun Sharma

Additive manufacturing has rapidly developed in terms of technology and its application in various types of industries. With this rapid development, there has been significant…

Abstract

Purpose

Additive manufacturing has rapidly developed in terms of technology and its application in various types of industries. With this rapid development, there has been significant research in the area of materials. This has led to the invention of Smart Materials (SMs). The 4D printing is basically 3D printing of these SMs. This paper aims to focus on novel materials and their useful application in various industries using the technology of 4D printing.

Design/methodology/approach

Research studies in 4D printing have increased since the time when this idea was first introduced in the year 2013. The present research study will deeply focus on the introduction to 4D printing, types of SMs and its application based on the various types of stimulus. The application of each type of SM has been explained along with its functioning with respect to the stimulus.

Findings

SMs have multiple functional applications pertaining to appropriate industries. The 4D printed parts have a distinctive capability to change its shape and self-assembly to carry out a specific function according to the requirement. Afterward, the fabricated part can recover to its 3D printed “memorized” shape once it is triggered by the stimulus.

Originality/value

The present study highlights the various capabilities of SMs, which is used as a raw material in 4D printing.

Graphical abstract

Details

Rapid Prototyping Journal, vol. 27 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 17 November 2023

Jinyu Zhang, Danni Shen, Yuxiang Yu, Defu Bao, Chao Li and Jiapei Qin

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused…

Abstract

Purpose

This study aims to develop a four-dimensional (4D) textile composite that self-forms upon thermal stimulation while eliminating thermomechanical programming steps by using fused deposition modeling (FDM) 3D printing technology, and tries to refine the product development path for this composite.

Design/methodology/approach

Polylactic acid (PLA) printing filaments were deposited on prestretched Lycra-knitted fabric using desktop-level FDM 3D printing technology to construct a three-layer structure of thermally responsive 4D textiles. Subsequently, the effects of different PLA thicknesses and Lycra knit fabric relative elongation on the permanent shape of thermally responsive 4D textiles were studied. Finally, a simulation program was written, and a case in this study demonstrates the usage of thermally responsive 4D textiles and the simulation program to design a wrist support product.

Findings

The constructed three-layer structure of PLA and Lycra knitted fabric can self-form under thermal stimulation. The material can also achieve reversible transformation between a permanent shape and multiple temporary shapes. Thinner PLA deposition and higher relative elongation of the Lycra-knitted fabric result in the greater curvature of the permanent shape of the thermally responsive 4D textile. The simulation program accurately predicted the permanent form of multiple basic shapes.

Originality/value

The proposed method enables 4D textiles to directly self-form upon thermal, which helps to improve the manufacturing efficiency of 4D textiles. The thermal responsiveness of the composite also contributes to building an intelligent human–material–environment interaction system.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 3 April 2017

Xin Li, Jianzhong Shang and Zhuo Wang

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing…

15523

Abstract

Purpose

The paper aims to promote the development of intelligent materials and the 4D printing technology by introducing recent advances and applications of additive layered manufacturing (ALM) technology of intelligent materials and the development of the 4D printing technology. Also, an arm-type ALM technology of shape memory polymer (SMP) with thermosetting polyurethane is briefly introduced.

Design/methodology/approach

This paper begins with an overview of the development and applications of intelligent materials around the world and the 4D printing technology. Then, the authors provide a brief outline of their research on arm-type ALM technology of SMP with thermosetting polyurethane.

Findings

The paper provides the recent developments and applications of intelligent materials and 4D printing technology. Then, it is suggested that intelligent materials mixed with different functional materials will be developed, and these types of materials will be more suitable for 4D printing.

Originality/value

This paper overviews the current developments and applications of intelligent materials and its use in 4D printing technology, and briefly states the authors’ research on arm-type ALM technology of SMP with thermosetting polyurethane.

Details

Assembly Automation, vol. 37 no. 2
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 9 September 2014

Eujin Pei

The purpose of this article is to reviews state-of-the-art developments in four-dimensional (4D) printing, discuss what it is, investigate new applications that have been…

3149

Abstract

Purpose

The purpose of this article is to reviews state-of-the-art developments in four-dimensional (4D) printing, discuss what it is, investigate new applications that have been discovered and suggest its future impact.

Design/methodology/approach

The article clarifies the definition of 4D printing and describes notable examples covering material science, equipment and applications.

Findings

This article highlights an emerging technology cycle where 4D printing research has gained traction within additive manufacturing. The use of stimuli-responsive materials can be programmed and printed to enable pre-determined reactions when subject to external stimuli.

Originality/value

This article reviews state-of-the-art developments in 4D printing, discusses what it is, investigates new applications that have been discovered and suggests its future impact.

Details

Assembly Automation, vol. 34 no. 4
Type: Research Article
ISSN: 0144-5154

Keywords

Article
Publication date: 16 July 2021

Rana El-Dabaa and Islam Salem

Conventional motion mechanisms in adaptive skins require rigid kinematic mechanical systems that require sensors and actuation devices, hence impeding the adoption of zero-energy…

331

Abstract

Purpose

Conventional motion mechanisms in adaptive skins require rigid kinematic mechanical systems that require sensors and actuation devices, hence impeding the adoption of zero-energy buildings. This paper aims to exploit wooden responsive actuators as a passive approach for adaptive facades with dynamic shading configurations. Wooden passive actuators are introduced as a passive responsive mechanism with zero-energy consumption.

Design/methodology/approach

The study encodes the embedded hygroscopic parameters of wood through 4D printing of wooden composites as a responsive wooden actuator. Several physical experiments focus on controlling the printed hygroscopic parameters based on the effect of 3D printing grain patterns and infill height on the wooden angle of curvature when exposed to variation in humidity. The printed hygroscopic parameters are applied on two types of wooden actuators with difference in the saturation percentage of wood in the wooden filaments specifically 20% and 40% for more control on the angle of curvature and response behavior.

Findings

The study presents the ability to print wooden grain patterns that result in single and double curved surfaces. Also, printing actuators with variation in infill height control each part of wooden actuator to response separately in a controlled passive behavior. The results show a passive programmed self-actuated mechanism that can enhance responsive façade design with zero-energy consumption through utilizing both material science and additive manufacturing mechanisms.

Originality/value

The study presents a set of controlled printed hygroscopic parameters that stretch the limits in controlling the response of printed wood to humidity instead of the typical natural properties of wood.

Article
Publication date: 27 January 2021

Irina Tatiana Garces and Cagri Ayranci

A review on additive manufacturing (AM) of shape memory polymer composites (SMPCs) is put forward to highlight the progress made up to date, conduct a critical review and show the…

Abstract

Purpose

A review on additive manufacturing (AM) of shape memory polymer composites (SMPCs) is put forward to highlight the progress made up to date, conduct a critical review and show the limitations and possible improvements in the different research areas within the different AM techniques. The purpose of this study is to identify academic and industrial opportunities.

Design/methodology/approach

This paper introduces the reader to three-dimensional (3 D) and four-dimensional printing of shape memory polymers (SMPs). Specifically, this review centres on manufacturing technologies based on material extrusion, photopolymerization, powder-based and lamination manufacturing processes. AM of SMPC was classified according to the nature of the filler material: particle dispersed, i.e. carbon, metallic and ceramic and long fibre reinforced materials, i.e. carbon fibres. This paper makes a distinction for multi-material printing with SMPs, as multi-functionality and exciting applications can be proposed through this method. Manufacturing strategies and technologies for SMPC are addressed in this review and opportunities in the research are highlighted.

Findings

This paper denotes the existing limitations in the current AM technologies and proposes several directions that will contribute to better use and improvements in the production of additive manufactured SMPC. With advances in AM technologies, gradient changes in material properties can open diverse applications of SMPC. Because of multi-material printing, co-manufacturing sensors to 3D printed smart structures can bring this technology a step closer to obtain full control of the shape memory effect and its characteristics. This paper discusses the novel developments in device and functional part design using SMPC, which should be aided with simple first stage design models followed by complex simulations for iterative and optimized design. A change in paradigm for designing complex structures is still to be made from engineers to exploit the full potential of additive manufactured SMPC structures.

Originality/value

Advances in AM have opened the gateway to the potential design and fabrication of functional parts with SMPs and their composites. There have been many publications and reviews conducted in this area; yet, many mainly focus on SMPs and reserve a small section to SMPC. This paper presents a comprehensive review directed solely on the AM of SMPC while highlighting the research opportunities.

Details

Rapid Prototyping Journal, vol. 27 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 25 June 2020

Yee Ling Yap, Swee Leong Sing and Wai Yee Yeong

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently…

3803

Abstract

Purpose

Soft robotics is currently a rapidly growing new field of robotics whereby the robots are fundamentally soft and elastically deformable. Fabrication of soft robots is currently challenging and highly time- and labor-intensive. Recent advancements in three-dimensional (3D) printing of soft materials and multi-materials have become the key to enable direct manufacturing of soft robots with sophisticated designs and functions. Hence, this paper aims to review the current 3D printing processes and materials for soft robotics applications, as well as the potentials of 3D printing technologies on 3D printed soft robotics.

Design/methodology/approach

The paper reviews the polymer 3D printing techniques and materials that have been used for the development of soft robotics. Current challenges to adopting 3D printing for soft robotics are also discussed. Next, the potentials of 3D printing technologies and the future outlooks of 3D printed soft robotics are presented.

Findings

This paper reviews five different 3D printing techniques and commonly used materials. The advantages and disadvantages of each technique for the soft robotic application are evaluated. The typical designs and geometries used by each technique are also summarized. There is an increasing trend of printing shape memory polymers, as well as multiple materials simultaneously using direct ink writing and material jetting techniques to produce robotics with varying stiffness values that range from intrinsically soft and highly compliant to rigid polymers. Although the recent work is done is still limited to experimentation and prototyping of 3D printed soft robotics, additive manufacturing could ultimately be used for the end-use and production of soft robotics.

Originality/value

The paper provides the current trend of how 3D printing techniques and materials are used particularly in the soft robotics application. The potentials of 3D printing technology on the soft robotic applications and the future outlooks of 3D printed soft robotics are also presented.

Details

Rapid Prototyping Journal, vol. 26 no. 8
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 March 2023

Nazmiye Tufan Tolmaç and Özlenen Erdem İşmal

This study aims to produce textile-like surfaces using fused deposition modelling (FDM) 3D printers and create a garment collection.

Abstract

Purpose

This study aims to produce textile-like surfaces using fused deposition modelling (FDM) 3D printers and create a garment collection.

Design/methodology/approach

Experiments were conducted using different types of materials in FDM 3D printers until the sufficient flexibility was achieved to create textile-like structures. During the research, properties of polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU) were observed. Geometrical patterns were printed and each of them gave a different result depending on the pattern. Based on the information obtained from the experiments, a garment collection with four total looks was designed inspired by Vivaldi’s “Four Seasons”.

Findings

Among the materials used, TPU, a flexible filament, yielded the best results. Because of the rigid properties of PLA and ABS, chain-like structures were printed to create relatively flexible surfaces, but the results were still not successful enough to create a clothing material. Therefore, TPU was preferred for the garment material selection.

Originality/value

In this study, combinations of 3D printed flexible structures and different types of fabrics were used to create a garment collection. It was concluded that, with the right material selection, 3D printing can be used as an alternative method to create a new aesthetic language in fashion design.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 972