Search results

1 – 10 of over 3000
Article
Publication date: 20 February 2024

Yuran Jin, Xiaolin Zhu, Xiaoxu Zhang, Hui Wang and Xiaoqin Liu

3D printing has been warmly welcomed by clothing enterprises for its customization capacity in recent years. However, such clothing enterprises have to face the digital…

Abstract

Purpose

3D printing has been warmly welcomed by clothing enterprises for its customization capacity in recent years. However, such clothing enterprises have to face the digital transformation challenges brought by 3D printing. Since the business model is a competitive weapon for modern enterprises, there is a research gap between business model innovation and digital transformation challenges for 3D-printing garment enterprises. The aim of the paper is to innovate a new business model for 3D-printing garment enterprises in digital transformation.

Design/methodology/approach

A business model innovation canvas (BMIC), a new method for business model innovation, is used to innovate a new 3D-printing clothing enterprises business model in the context of digital transformation. The business model canvas (BMC) method is adopted to illustrate the new business model. The business model ecosystem is used to design the operating architecture and mechanism of the new business model.

Findings

First, 3D-printing clothing enterprises are facing digital transformation, and they urgently need to innovate new business models. Second, mass customization and distributed manufacturing are important ways of solving the business model problems faced by 3D-printing clothing enterprises in the process of digital transformation. Third, BMIC has proven to be an effective tool for business model innovation.

Research limitations/implications

The new mass deep customization-distributed manufacturing (MDC-DM) business model is universal. As such, it can provide an important theoretical reference for other scholars to study similar problems. The digital transformation background is taken into account in the process of business model innovation. Therefore, this is the first hybrid research that has been focused on 3D printing, garment enterprises, digital transformation and business model innovation. On the other hand, business model innovation is a type of exploratory research, which means that the MDC-DM business model’s application effect cannot be immediately observed and requires further verification in the future.

Practical implications

The new business model MDC-DM is not only applicable to 3D-printing garment enterprises but also to some other enterprises that are either using or will use 3D printing to enhance their core competitiveness.

Originality/value

A new business model, MDC-DM, is created through BMIC, which allows 3D-printing garment enterprises to meet the challenges of digital transformation. In addition, the original canvas of the MDC-DM business model is designed using BMC. Moreover, the ecosystem of the MDC-DM business model is constructed, and its operation mechanisms are comprehensively designed.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Open Access
Book part
Publication date: 1 May 2019

Nils O.E. Olsson, Ali Shafqat, Emrah Arica and Andreas Økland

The purpose of this paper is to study the introduction of 3D-printing of concrete in the construction sector.

Abstract

Purpose

The purpose of this paper is to study the introduction of 3D-printing of concrete in the construction sector.

Design/Methodology/Approach

A survey was conducted to collect professional view on ongoing innovations in the construction sector, including 3D-printing. Participants were selected among the members of Norwegian networks for project and construction management research.

Findings

The survey highlighted effective leadership, collaboration with partners and industry-academia collaboration as primary enablers of innovation. Few of the respondents to the survey have used 3D-printing technologies.

Research Limitations/Implications

It is difficult to obtain representative samples in this type of research, including this study. The study can be seen as a snapshot of attitudes in the sector.

Practical Implications

3D-printing appear as a potentially interesting technology, especially for unstandardized construction components. Further work is needed to materialise the expectation for technological development in the construction sector.

Originality/Value

Most research on 3D-printing has focused on demonstrating technical potential. This study adds a practitioners’ perspective, with a large dose of pragmatism.

Details

10th Nordic Conference on Construction Economics and Organization
Type: Book
ISBN: 978-1-83867-051-1

Keywords

Book part
Publication date: 19 September 2019

Aric Rindfleisch, Alan J. Malter and Gregory J. Fisher

Retailing thought and practice is premised on the assumption that consumers visit retailers to search for and acquire objects produced by manufacturers. In essence, we assume that…

Abstract

Retailing thought and practice is premised on the assumption that consumers visit retailers to search for and acquire objects produced by manufacturers. In essence, we assume that the acts of consuming and producing are conducted by separate entities. This unspoken yet familiar premise shapes the questions retail scholars ask and the way retail practitioners think about their industry. Although this assumption accurately depicted retailing since the Industrial Revolution, its relevance is being challenged by a growing set of individuals who are equipped with new digital tools to engage in self-manufacturing. In this chapter, we examine self-manufacturing with a particular focus on the recent rise of desktop 3D printing. After discussing this new technology and reviewing the literature, we offer a conceptual classification of four distinct types of 3D printed objects and use this classification to inform a content analysis of over 400 of these objects. Based on this review and analysis, we discuss the implications of self-manufacturing for retailing thought and practice.

Details

Marketing in a Digital World
Type: Book
ISBN: 978-1-78756-339-1

Keywords

Abstract

Details

3D Printing Cultures, Politics and Hackerspaces
Type: Book
ISBN: 978-1-80071-665-0

Abstract

Details

3D Printing Cultures, Politics and Hackerspaces
Type: Book
ISBN: 978-1-80071-665-0

Abstract

Details

3D Printing Cultures, Politics and Hackerspaces
Type: Book
ISBN: 978-1-80071-665-0

Abstract

Details

3D Printing Cultures, Politics and Hackerspaces
Type: Book
ISBN: 978-1-80071-665-0

Article
Publication date: 11 August 2023

Ruifan Chang and Maxwell Fordjour Antwi-Afari

The application of three-dimensional (3D) printing technology in construction projects is of increasing interest to researchers and construction practitioners. Although the…

Abstract

Purpose

The application of three-dimensional (3D) printing technology in construction projects is of increasing interest to researchers and construction practitioners. Although the application of 3D printing technology at various stages of the project lifecycle has been explored, few studies have identified the relative importance of critical success factors (CSFs) for implementing 3D printing technology in construction projects. To address this research gap, this study aims to explore the academics (i.e. researchers) and construction practitioners’ perspectives on CSFs for implementing 3D printing technology in construction projects.

Design/methodology/approach

To do this, a questionnaire was administered to participants (i.e. academics and construction practitioners) with knowledge and expertise in 3D printing technology in construction projects. The collected data were analysed using mean score ranking, normalization and rank agreement analysis to identify CSFs and determine the consistency of the ranking of CSFs between academics and construction practitioners. In addition, exploratory factor analysis was used to identify the relationships and underlying constructs of the measured CSFs.

Findings

Through a rank agreement analysis of the collected data, 11 CSFs for implementing 3D printing technology were retrieved (i.e. 17% agreement), indicating a diverse agreement in the ranking of the CSFs between academics and construction practitioners. In addition, the results show three key components of CSFs including “production demand enabling CSFs”, “optimize the construction process enabling CSFs” and “optimized design enabling CSFs”.

Originality/value

This study highlights the feasibility of implementing the identified CSFs for 3D printing technology in construction projects, which not only serves as a reference for other researchers but also increases construction practitioners’ awareness of the practical benefits of implementing 3D printing technology in construction projects. Specifically, it would optimize the construction lifecycle processes, enhance digital transformation and promote sustainable construction projects.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 30 November 2022

Xishuang Jing, Duanping Lv, Fubao Xie, Chengyang Zhang, Siyu Chen and Ben Mou

3D printing technology has the characteristics of fast forming and low cost and can manufacture parts with complex structures. At present, it has been widely used in various…

Abstract

Purpose

3D printing technology has the characteristics of fast forming and low cost and can manufacture parts with complex structures. At present, it has been widely used in various manufacturing fields. However, traditional 3-axis printing has limitations of the support structure and step effect due to its low degree of freedom. The purpose of this paper is to propose a robotic 3D printing system that can realize support-free printing of parts with complex structures.

Design/methodology/approach

A robotic 3D printing system consisting of a 6-degrees of freedom robotic manipulator with a material extrusion system is proposed for multi-axis additive manufacturing applications. And the authors propose an approximation method for the extrusion value E based on the accumulated arc length of the already printed points, which is used to realize the synchronous movement between multiple systems. Compared with the traditional 3-axis printing system, the proposed robotic 3D printing system can provide greater flexibility when printing complex structures and even realize curved layer printing.

Findings

Two printing experiments show that compared with traditional 3D printing, a multi-axis 3D printing system saves 47% and 79% of materials, respectively, and the mechanical properties of curved layer printing using a multi-axis 3D printing system are also better than that of 3-axis printing.

Originality/value

This paper shows a simple and effective method to realize the synchronous movement between multiple systems so as to develop a robotic 3D printing system that can realize support-free printing and verifies the feasibility of the system through experiments.

Details

Industrial Robot: the international journal of robotics research and application, vol. 50 no. 2
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 13 July 2022

Soud Mohammad Almahamid, Nehal Almurbati, Adel Ismail Al-Alawi and Mohammed Al Fataih

The study aims to develop an integrated model for three-dimensional (3D) printing adoption in the Gulf Cooperation Council (GCC) context to form a baseline for more theoretical…

Abstract

Purpose

The study aims to develop an integrated model for three-dimensional (3D) printing adoption in the Gulf Cooperation Council (GCC) context to form a baseline for more theoretical and empirical debate from emerging markets.

Design/methodology/approach

A qualitative approach with a convenience sample is adopted since there is no formal body that has accurate data about the number of companies, governmental bodies, nongovernmental organizations, universities, labs, etc. that already have adopted 3D printing.

Findings

The results indicate that the technological usefulness of 3D printing and its ease-of-use factor were found to be lacking among community members and governmental officials. Yet, these factors were the most influential factor affecting the spread of 3D printing technology adoption in the GCC countries. Nevertheless, the adaptation of 3D printing is not yet at the level of its global markets, nor is it used within leading companies’ assembly lines. In addition, the 3D printing awareness and use increased during the COVID-19 pandemic. Yet, the adaptation rate is still below expectations due to several challenges that face the growth of the 3D printing market in the GCC countries. The most vital challenge facing 3D printing growth is manifested in governmental policies and regulations.

Practical implications

Companies’ managers can benefit from the current study results by focusing on the factors that facilitate 3D adoption and avoiding bottle-neck factors that hinder the speed of the 3D adoption. 3D providers can also benefit by understanding the factors that affect 3D adoption and designing their machine and marketing strategy in a way that helps the intended companies to easily adopt 3D printing.

Originality/value

To the best of the authors’ knowledge, this is the first study that explored 3D printing adoption on the GCC countries’ level. It also adds a new flavor to the literature by exploring 3D adoption during the COVID-19 crisis.

Details

Journal of Science and Technology Policy Management, vol. 14 no. 5
Type: Research Article
ISSN: 2053-4620

Keywords

1 – 10 of over 3000