Search results

1 – 10 of over 1000
Article
Publication date: 3 October 2018

Mukul Ramola, Vinod Yadav and Rakesh Jain

The purpose of this paper is to discuss different 3D printing techniques and also illustrate the issues related to 3D printing and cost-effectiveness in the near future.

1885

Abstract

Purpose

The purpose of this paper is to discuss different 3D printing techniques and also illustrate the issues related to 3D printing and cost-effectiveness in the near future.

Design/methodology/approach

A systematic literature review methodology is adopted for this review paper. 3D printing is in the initial phase of implementation in healthcare; therefore, a study of 70 research papers is done, which discusses the research trends of 3D printing in healthcare sector from 2007 to mid-2018.

Findings

Though additive manufacturing has a vast application, it has not been used to its full potential. Therefore, more research is required in that direction. It is revealed from the review that only a few researchers have explored issues related to cost, which can clearly show cost-effectiveness of adopting 3D printing.

Originality/value

This paper helps in understanding the different 3D printing techniques and their application in the healthcare. It also proposed some methods which can be applied in delivering customized pharmaceuticals to the customer and to improve surgery.

Details

Journal of Manufacturing Technology Management, vol. 30 no. 1
Type: Research Article
ISSN: 1741-038X

Keywords

Article
Publication date: 22 July 2019

Md. Hazrat Ali, Shaheidula Batai and Dastan Sarbassov

This study highlights the demand for low-cost and high accuracy products through the design and development of new 3D printing technologies. Besides, significant progress has been…

2026

Abstract

Purpose

This study highlights the demand for low-cost and high accuracy products through the design and development of new 3D printing technologies. Besides, significant progress has been made in this field. A comparative study helps to understand the latest development in materials and future prospect of this technology.

Design/methodology/approach

Nevertheless, a large amount of progress still remains to be made. While some of the works have focused on the performances of the materials, the rest have focused on the development of new methods and techniques in additive manufacturing.

Findings

This paper critically evaluates the current 3D printing technologies, including the development and optimizations made to the printing methods, as well as the printed objects. Meanwhile, previous developments in this area and contributions to the modern trend in manufacturing technology are summarized briefly.

Originality/value

The paper can be summarized in three sections. Firstly, the existing printing methods along with the frequently used printing materials, as well as the processing parameters, and the factors which influence the quality and mechanical performances of the printed objects are discussed. Secondly, the optimization techniques, such as topology, shape, structure and mechanical property, are described. Thirdly, the latest development and applications of additive manufacturing are depicted, and the scope of future research in the relevant area is put forward.

Details

Rapid Prototyping Journal, vol. 25 no. 6
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 12 August 2021

Sven Maricic, Daniela Kovacevic Pavicic, Barbara Ptacnik and Romina Prziklas Druzeta

This study aims to develop a specialized and economically feasible educational model using a combination of conventional approach and additive technology with a precision that…

Abstract

Purpose

This study aims to develop a specialized and economically feasible educational model using a combination of conventional approach and additive technology with a precision that proves to be sufficient for educational use. With the use of computer-aided design/computer-aided manufacturing models in educational stages, the possibility of infectious diseases transmission can be significantly reduced.

Design/methodology/approach

The proposed process involves the planning and development of specialized anatomical three-dimensional (3D) models and associated structures using omnipresent additive technologies. A short survey was conducted among dental students about their knowledge of applying additive technologies in dental medicine and their desire to implement such technologies into existing curricula.

Findings

The results revealed how an educational 3D model can be developed by optimizing the mesh parameters to reduce the total number of elements while maintaining the quality of the geometric structure. The survey results demonstrated that the willingness to adapt to new technologies is increasing (p < 0.001) among students with a higher level of education. A series of recent studies have indicated that the lack of knowledge and the current skill gap remain the most significant barriers to the wider adoption of additive manufacturing.

Practical implications

An economically feasible, realistic anatomical educational model in the field of dental medicine was established. Additive technology is a key pillar of new specialized-knowledge digital skills for the enhancement of dental training.

Originality/value

The novelty of this study is the introduction of a 3D technology for promoting an economically feasible model, without compromising the quality of dental education.

Details

Rapid Prototyping Journal, vol. 27 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 January 2024

Nirmal Singh, Harmanjit Singh Banga, Jaswinder Singh and Rajnish Sharma

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by…

Abstract

Purpose

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by implementing 3D printing technology under the “Makerspace.”

Design/methodology/approach

The paper provides a brief account of various tools and techniques used by veterinary and animal sciences institutions for information dissemination amongst the stakeholders and associated challenges with a focus on the use of 3D printing technology to overcome the bottlenecks. An overview of the 3D printing technology has been provided following the instances of use of this novel technology in veterinary and animal sciences. An initiative of the University Library, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, to harness the potential of this technology in disseminating information amongst livestock stakeholders has been discussed.

Findings

3D printing has the potential to enhance learning in veterinary and animal sciences by providing hands-on exposure to various anatomical structures, such as bones, organs and blood vessels, without the need for a cadaver. This approach enhances students’ spatial understanding and helps them better understand anatomical concepts. Libraries can enhance their visibility and can contribute actively to knowledge dissemination beyond traditional library services.

Originality/value

The ideas about how to harness the potential of 3D printing in knowledge dissemination amongst livestock sector stakeholders have been elaborated. This promotes creativity amongst librarians enabling them to think how they can engage in knowledge dissemination thinking out of the box.

Details

Library Hi Tech News, vol. 41 no. 2
Type: Research Article
ISSN: 0741-9058

Keywords

Article
Publication date: 24 June 2020

Ranjeet Agarwala, Carlos J. Anciano, Joshua Stevens, Robert Allen Chin and Preston Sparks

The purpose of the paper was to present a specific case study of how 3D printing was introduced in the chest wall construction process of a specific patient with unique medical…

Abstract

Purpose

The purpose of the paper was to present a specific case study of how 3D printing was introduced in the chest wall construction process of a specific patient with unique medical condition. A life-size 3D model of the patient’s chest wall was 3D printed for pre-surgical planning. The intent was to eliminate the need for operative exposure to map the pathological area. The model was used for preoperative visualization and formation of a 1-mm thick titanium plate implant, which was placed in the patient during chest wall reconstructive surgery. The purpose of the surgery was to relive debilitating chronic pain due to right scapular entrapment.

Design/methodology/approach

The patient was born with a twisted spine. Over time, it progressed to severe and debilitating scoliosis, which required the use of a thoracic brace. Computerized tomography (CT) data were converted to a 3D printed model. The model was used to size and form a 1-mm thick titanium plate implant. It was also used to determine the ideal location for placement of the plate during thoracotomy preoperatively.

Findings

The surgery, aided by the model, was successful and resulted in a significantly smaller incision. The techniques reduced invasiveness and enabled the doctors to conduct the procedure efficiently and decreased surgery time. The patient experienced relief of the chronic debilitating pain and no longer need the thoracic brace.

Originality/value

The 3D model facilitated pre-operative planning and modeling of the implant. It also enabled accurate incision locations of the thoracotomy site and placement of the implant. Although chest wall reconstruction surgeries have been undertaken, this paper documents a specific case study of chest wall construction fora specific patient with unique pathological conditions.

Details

Rapid Prototyping Journal, vol. 26 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 16 November 2021

Wiktoria Maria Wojnarowska, Jakub Najowicz, Tomasz Piecuch, Michał Sochacki, Dawid Pijanka, Jolanta Trybulec and Sławomir Miechowicz

Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot…

Abstract

Purpose

Chicken orthoses that cover the ankle joint area are not commercially available. Therefore, the main purpose of this study is to fabricate a customised temporary Ankle–Foot Orthosis (AFO) for a chicken with a twisted ankle using computer-aided design (CAD) and three-dimensional (3D) printing. The secondary objective of the paper is to present the specific application of Additive Manufacturing (AM) in veterinary medicine.

Design/methodology/approach

The design process was based on multiple sketches, photos and measurements that were provided by the owner of the animal. The 3D model of the orthosis was made with Autodesk Fusion 360, while the prototype was fabricated using fused deposition modelling (FDM). Evaluation of the AFO was performed using the finite element method.

Findings

The work resulted in a functional 3D printed AFO for chicken. It was found that the orthosis made with AM provides satisfactory stiffen and a good fit. It was concluded that AM is suitable for custom bird AFO fabrication and, in some respects, is superior to traditional manufacturing methods. It was also concluded that the presented procedure can be applied in other veterinary cases and to other animal species and other parts of their body. AM provides veterinary with a powerful tool for the production of well-fitted and durable orthoses for animals.

Research limitations/implications

The study does not include the chicken's opinion on the comfort or fit of the manufactured AFO due to communication issues. Evaluation of the final prototype was done by the researchers and the animal owner.

Originality/value

No evidence was found in the literature on the use of AM for chicken orthosis, so this study is the first to describe such an application of AM. In addition, the study demonstrates the value of AM in veterinary medicine, especially in the production of devices such as orthoses.

Details

Rapid Prototyping Journal, vol. 28 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 June 2021

Samuel Furka, Daniel Furka, Nitin Chandra Teja Chandra Teja Dadi, Patrik Palacka, Dominika Hromníková, Julio Ariel Dueñas Santana, Javier Díaz Pineda, Saul Dueñas Casas and Juraj Bujdák

This study aims to describe the preparation of antimicrobial material usable in 3D printing of medical devices. Despite the wealth of technological progress at the time of the…

Abstract

Purpose

This study aims to describe the preparation of antimicrobial material usable in 3D printing of medical devices. Despite the wealth of technological progress at the time of the crisis caused by SARS-CoV-2 virus: Virus that causes current Pandemic situation (COVID-19), the global population had long been exposed beforehand to an acute absence of essential medical devices. As a response, a new type of composite materials intended for rapid prototyping, based on layered silicate saponite (Sap), antimicrobial dye phloxine B (PhB) and thermoplastics, has been recently developed.

Design/methodology/approach

Sap was modified with a cationic surfactant and subsequently functionalized with PhB. The hybrid material in powder form was then grounded with polyethylene terephthalate-glycol (PETG) or polylactic acid (PLA) in a precisely defined weight ratio and extruded into printing filaments. The stability and level of cytotoxicity of these materials in various physiological environments simulating the human body have been studied. The applicability of these materials in bacteria and a yeast-infected environment was evaluated.

Findings

Ideal content of the hybrid material, with respect to thermoplastic, was 15 weight %. Optimal printing temperature and speed, with respect to maintaining antimicrobial activity of the prepared materials, were T = 215°C at 50 mm/s for PETG/SapPhB and T = 230°C at 40 mm/s for PLA/SapPhB. 3 D-printed air filters made of these materials could keep inner air flow at 63.5% and 76.8% of the original value for the PLA/SapPhB and PETG/SapPhB, respectively, whereas the same components made without PhB had a 100% reduction of airflow.

Practical implications

The designed materials can be used for rapid prototyping of medical devices.

Originality/value

The new materials have been immediately used in the construction of an emergency lung ventilator, Q-vent, which has been used in different countries during the COVID-19 crisis.

Details

Rapid Prototyping Journal, vol. 27 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 1 February 2021

Sapam Ningthemba Singh, Vavilada Satya Swamy Venkatesh and Ashish Bhalchandra Deoghare

During the COVID-19 pandemic, the three-dimensional (3D) printing community is actively participating to address the supply chain gap of essential medical supplies such as face…

Abstract

Purpose

During the COVID-19 pandemic, the three-dimensional (3D) printing community is actively participating to address the supply chain gap of essential medical supplies such as face masks, face shields, door adapters, test swabs and ventilator valves. This paper aims to present a comprehensive study on the role of 3D printing during the coronavirus (COVID-19) pandemic, its safety and its challenges.

Design/methodology/approach

This review paper focuses on the applications of 3D printing in the fight against COVID-19 along with the safety and challenges associated with 3D printing to fight COVID-19. The literature presented in this paper is collected from the journal indexing engines including Scopus, Google Scholar, ResearchGate, PubMed, Web of Science, etc. The main keywords used for searches were 3D printing COVID-19, Safety of 3D printed parts, Sustainability of 3D printing, etc. Further possible iterations of the keywords were used to collect the literature.

Findings

The applications of 3D printing in the fight against COVID-19 are 3D printed face masks, shields, ventilator valves, test swabs, drug deliveries and hands-free door adapters. As most of these measures are implemented hastily, the safety and reliability of these parts often lacked approval. The safety concerns include the safety of the printed parts, operators and secondary personnel such as the workers in material preparation and transportation. The future challenges include sustainability of the process, long term supply chain, intellectual property and royalty-free models, etc.

Originality/value

This paper presents a comprehensive study on the applications of 3D printing in the fight against COVID-19 with emphasis on the safety and challenges in it.

Article
Publication date: 10 June 2020

Taehun Kim, Guk Bae Kim, Hyun Kyung Song, Yoon Soo Kyung, Choung-Soo Kim and Namkug Kim

This study aims to systemically evaluate morphological printing errors between computer-aided design (CAD) and reference models fabricated using two different three-dimensional…

Abstract

Purpose

This study aims to systemically evaluate morphological printing errors between computer-aided design (CAD) and reference models fabricated using two different three-dimensional printing (3DP) technologies with hard and soft materials.

Design/methodology/approach

The reference models were designed to ensure simpler and more accurate measurements than those obtained from actual kidney simulators. Three reference models, i.e. cube, dumbbell and simplified kidney, were manufactured using photopolymer jetting (PolyJet) with soft and hard materials and multi-jet printing (MJP) with hard materials. Each reference model was repeatably measured five times using digital calipers for each length. These values were compared with those obtained using CAD.

Findings

The results demonstrate that the cube models with the hard material of MJP and hard and soft materials of PolyJet were smaller (p = 0.022, 0.015 and 0.057, respectively). The dumbbell model with the hard material of MJP was smaller (p = 0.029) and that with the soft material of PolyJet was larger (p = 0.020). However, the dumbbell with the hard material of PolyJet generated low errors (p = 0.065). Finally, the simplified kidney models with the hard material of MJP and soft materials of PolyJet were smaller (p = 0.093 and 0.021) and that with the hard material of PolyJet was opposite to the former models (p = 0.043).

Originality/value

This study, to the best of authors’ knowledge, is the first to determine the accuracy between CAD and reference models fabricated using two different 3DP technologies with multi-materials. Thus, it serves references for surgical applications as simulators and guides that require accuracy.

Details

Rapid Prototyping Journal, vol. 26 no. 7
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 February 2021

Erfan Rezvani Ghomi, Saeideh Kholghi Eshkalak, Sunpreet Singh, Amutha Chinnappan, Seeram Ramakrishna and Roger Narayan

The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing…

Abstract

Purpose

The potential implications of the three-dimensional printing (3DP) technology are growing enormously in the various health-care sectors, including surgical planning, manufacturing of patient-specific implants and developing anatomical models. Although a wide range of thermoplastic polymers are available as 3DP feedstock, yet obtaining biocompatible and structurally integrated biomedical devices is still challenging owing to various technical issues.

Design/methodology/approach

Polyether ether ketone (PEEK) is an organic and biocompatible compound material that is recently being used to fabricate complex design geometries and patient-specific implants through 3DP. However, the thermal and rheological features of PEEK make it difficult to process through the 3DP technologies, for instance, fused filament fabrication. The present review paper presents a state-of-the-art literature review of the 3DP of PEEK for potential biomedical applications. In particular, a special emphasis has been given on the existing technical hurdles and possible technological and processing solutions for improving the printability of PEEK.

Findings

The reviewed literature highlighted that there exist numerous scientific and technical means which can be adopted for improving the quality features of the 3D-printed PEEK-based biomedical structures. The discussed technological innovations will help the 3DP system to enhance the layer adhesion strength, structural stability, as well as enable the printing of high-performance thermoplastics.

Originality/value

The content of the present manuscript will motivate young scholars and senior scientists to work in exploring high-performance thermoplastics for 3DP applications.

Details

Rapid Prototyping Journal, vol. 27 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of over 1000