Search results

1 – 10 of 69
Article
Publication date: 22 April 2024

Pınar Şenel, Hacer Turhan and Erkan Sezgin

Three-dimentional (3D) food printers are innovative technologies that contribute to healthy, personalized and stainable nutrition. However, many consumers are still vigilant about…

Abstract

Purpose

Three-dimentional (3D) food printers are innovative technologies that contribute to healthy, personalized and stainable nutrition. However, many consumers are still vigilant about 3D printed food in the age of technology. The purpose of this study is to develop a scale and propose a model for consumption preferences associated with 3D-printed food (3DPF).

Design/methodology/approach

The developed questionnaire was handed to 192 Z and Y generation participants (Data1) for the exploratory factor analysis stage initially. Then, the questionnaire was handed to another group of 165 participants (Data 2) for verification by confirmatory factor analysis. Finally, the dimensions “healthy and personalized nutrition,” “sustainable nutrition” and “socio-cultural nutrition” were analyzed by structural equation modeling.

Findings

The results indicated that there was a high relationship between “healthy and personalized nutrition” and “sustainable nutrition” as well as between “sustainable nutrition” and “socio-cultural nutrition” when 3DPF was considered.

Originality/value

The study would contribute to the new survey area related to 3DPF by presenting a scale and proposing a model. Also, the study reveals which nutritional factors affect the Z and Y generation’s consumption of 3DPF. In this context, the study aims to make marketing contributions to the food production, restaurant and hotel sectors.

研究目的

3D食品打印机是创新技术, 有助于健康、个性化和可持续的营养。然而, 在科技时代, 许多消费者仍然对3D打印食品保持警惕。本研究的目的是开发一个刻画与3D打印食品相关的消费偏好的量表并提出一个模型。

研究方法

本研究首先将开发的问卷交给192名Z和Y世代参与者(数据1)进行探索性因素分析阶段。然后, 将问卷交给另一组165名参与者(数据2)通过验证性因素分析进行验证。最后, 通过结构方程模型分析了“健康和个性化营养”、“可持续营养”和“社会文化营养”这三个维度。

研究发现

结果表明, 在考虑3D打印食品时, “健康和个性化营养”与“可持续营养”之间以及“可持续营养”与“社会文化营养”之间存在很高的关系。

研究创新

本研究通过提出一个量表并提出一个模型, 为与3D打印食品相关的新调查领域做出了贡献。此外, 研究揭示了影响Z和Y世代对3D打印食品消费的营养因素。在这一背景下, 本研究旨在为食品生产、餐厅和酒店等领域做出营销贡献。

Details

Journal of Hospitality and Tourism Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9880

Keywords

Article
Publication date: 7 March 2023

Nazmiye Tufan Tolmaç and Özlenen Erdem İşmal

This study aims to produce textile-like surfaces using fused deposition modelling (FDM) 3D printers and create a garment collection.

Abstract

Purpose

This study aims to produce textile-like surfaces using fused deposition modelling (FDM) 3D printers and create a garment collection.

Design/methodology/approach

Experiments were conducted using different types of materials in FDM 3D printers until the sufficient flexibility was achieved to create textile-like structures. During the research, properties of polylactic acid (PLA), acrylonitrile butadiene styrene (ABS) and thermoplastic polyurethane (TPU) were observed. Geometrical patterns were printed and each of them gave a different result depending on the pattern. Based on the information obtained from the experiments, a garment collection with four total looks was designed inspired by Vivaldi’s “Four Seasons”.

Findings

Among the materials used, TPU, a flexible filament, yielded the best results. Because of the rigid properties of PLA and ABS, chain-like structures were printed to create relatively flexible surfaces, but the results were still not successful enough to create a clothing material. Therefore, TPU was preferred for the garment material selection.

Originality/value

In this study, combinations of 3D printed flexible structures and different types of fabrics were used to create a garment collection. It was concluded that, with the right material selection, 3D printing can be used as an alternative method to create a new aesthetic language in fashion design.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 26 March 2024

Vishal Mishra, Ch Kapil Ror, Sushant Negi and Simanchal Kar

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

55

Abstract

Purpose

This study aims to present an experimental approach to develop a high-strength 3D-printed recycled polymer composite reinforced with continuous metal fiber.

Design/methodology/approach

The continuous metal fiber composite was 3D printed using recycled and virgin acrylonitrile butadiene styrene-blended filament (RABS-B) in the ratio of 60:40 and postused continuous brass wire (CBW). The 3D printing was done using an in-nozzle impregnation technique using an FFF printer installed with a self-modified nozzle. The tensile and single-edge notch bend (SENB) test samples are fabricated to evaluate the tensile and fracture toughness properties compared with VABS and RABS-B samples.

Findings

The tensile and SENB tests revealed that RABS-B/CBW composite 3D printed with 0.7 mm layer spacing exhibited a notable improvement in Young’s modulus, ultimate tensile strength, elongation at maximum load and fracture toughness by 51.47%, 18.67% and 107.3% and 22.75% compared to VABS, respectively.

Social implications

This novel approach of integrating CBW with recycled thermoplastic represents a significant leap forward in material science, delivering superior strength and unlocking the potential for advanced, sustainable composites in demanding engineering fields.

Originality/value

Limited research has been conducted on the in-nozzle impregnation technique for 3D printing metal fiber-reinforced recycled thermoplastic composites. Adopting this method holds the potential to create durable and high-strength sustainable composites suitable for engineering applications, thereby diminishing dependence on virgin materials.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 11 August 2023

Ruifan Chang and Maxwell Fordjour Antwi-Afari

The application of three-dimensional (3D) printing technology in construction projects is of increasing interest to researchers and construction practitioners. Although the…

Abstract

Purpose

The application of three-dimensional (3D) printing technology in construction projects is of increasing interest to researchers and construction practitioners. Although the application of 3D printing technology at various stages of the project lifecycle has been explored, few studies have identified the relative importance of critical success factors (CSFs) for implementing 3D printing technology in construction projects. To address this research gap, this study aims to explore the academics (i.e. researchers) and construction practitioners’ perspectives on CSFs for implementing 3D printing technology in construction projects.

Design/methodology/approach

To do this, a questionnaire was administered to participants (i.e. academics and construction practitioners) with knowledge and expertise in 3D printing technology in construction projects. The collected data were analysed using mean score ranking, normalization and rank agreement analysis to identify CSFs and determine the consistency of the ranking of CSFs between academics and construction practitioners. In addition, exploratory factor analysis was used to identify the relationships and underlying constructs of the measured CSFs.

Findings

Through a rank agreement analysis of the collected data, 11 CSFs for implementing 3D printing technology were retrieved (i.e. 17% agreement), indicating a diverse agreement in the ranking of the CSFs between academics and construction practitioners. In addition, the results show three key components of CSFs including “production demand enabling CSFs”, “optimize the construction process enabling CSFs” and “optimized design enabling CSFs”.

Originality/value

This study highlights the feasibility of implementing the identified CSFs for 3D printing technology in construction projects, which not only serves as a reference for other researchers but also increases construction practitioners’ awareness of the practical benefits of implementing 3D printing technology in construction projects. Specifically, it would optimize the construction lifecycle processes, enhance digital transformation and promote sustainable construction projects.

Details

Construction Innovation , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 20 February 2024

Yuran Jin, Xiaolin Zhu, Xiaoxu Zhang, Hui Wang and Xiaoqin Liu

3D printing has been warmly welcomed by clothing enterprises for its customization capacity in recent years. However, such clothing enterprises have to face the digital…

Abstract

Purpose

3D printing has been warmly welcomed by clothing enterprises for its customization capacity in recent years. However, such clothing enterprises have to face the digital transformation challenges brought by 3D printing. Since the business model is a competitive weapon for modern enterprises, there is a research gap between business model innovation and digital transformation challenges for 3D-printing garment enterprises. The aim of the paper is to innovate a new business model for 3D-printing garment enterprises in digital transformation.

Design/methodology/approach

A business model innovation canvas (BMIC), a new method for business model innovation, is used to innovate a new 3D-printing clothing enterprises business model in the context of digital transformation. The business model canvas (BMC) method is adopted to illustrate the new business model. The business model ecosystem is used to design the operating architecture and mechanism of the new business model.

Findings

First, 3D-printing clothing enterprises are facing digital transformation, and they urgently need to innovate new business models. Second, mass customization and distributed manufacturing are important ways of solving the business model problems faced by 3D-printing clothing enterprises in the process of digital transformation. Third, BMIC has proven to be an effective tool for business model innovation.

Research limitations/implications

The new mass deep customization-distributed manufacturing (MDC-DM) business model is universal. As such, it can provide an important theoretical reference for other scholars to study similar problems. The digital transformation background is taken into account in the process of business model innovation. Therefore, this is the first hybrid research that has been focused on 3D printing, garment enterprises, digital transformation and business model innovation. On the other hand, business model innovation is a type of exploratory research, which means that the MDC-DM business model’s application effect cannot be immediately observed and requires further verification in the future.

Practical implications

The new business model MDC-DM is not only applicable to 3D-printing garment enterprises but also to some other enterprises that are either using or will use 3D printing to enhance their core competitiveness.

Originality/value

A new business model, MDC-DM, is created through BMIC, which allows 3D-printing garment enterprises to meet the challenges of digital transformation. In addition, the original canvas of the MDC-DM business model is designed using BMC. Moreover, the ecosystem of the MDC-DM business model is constructed, and its operation mechanisms are comprehensively designed.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

11

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 April 2024

Lida Haghnegahdar, Sameehan S. Joshi, Rohith Yanambaka Venkata, Daniel A. Riley and Narendra B. Dahotre

Additive manufacturing also known as 3D printing is an evolving advanced manufacturing technology critical for the new era of complex machinery and operating systems…

16

Abstract

Purpose

Additive manufacturing also known as 3D printing is an evolving advanced manufacturing technology critical for the new era of complex machinery and operating systems. Manufacturing systems are increasingly faced with risk of attacks not only by traditional malicious actors such as hackers and cyber-criminals but also by some competitors and organizations engaged in corporate espionage. This paper aims to elaborate a plausible risk practice of designing and demonstrate a case study for the compromised-based malicious for polymer 3D printing system.

Design/methodology/approach

This study assumes conditions when a machine was compromised and evaluates the effect of post compromised attack by studying its effects on tensile dog bone specimens as the printed object. The designed algorithm removed predetermined specific number of layers from the tensile samples. The samples were visually identical in terms of external physical dimensions even after removal of the layers. Samples were examined nondestructively for density. Additionally, destructive uniaxial tensile tests were carried out on the modified samples and compared to the unmodified sample as a control for various mechanical properties. It is worth noting that the current approach was adapted for illustrating the impact of cyber altercations on properties of additively produced parts in a quantitative manner. It concurrently pointed towards the vulnerabilities of advanced manufacturing systems and a need for designing robust mitigation/defense mechanism against the cyber altercations.

Findings

Density, Young’s modulus and maximum strength steadily decreased with an increase in the number of missing layers, whereas a no clear trend was observed in the case of % elongation. Post tensile test observations of the sample cross-sections confirmed the successful removal of the layers from the samples by the designed method. As a result, the current work presented a cyber-attack model and its quantitative implications on the mechanical properties of 3D printed objects.

Originality/value

To the best of the authors’ knowledge, this is the original work from the team. It is currently not under consideration for publication in any other avenue. The paper provides quantitative approach of realizing impact of cyber intrusions on deteriorated performance of additively manufactured products. It also enlists important intrusion mechanisms relevant to additive manufacturing.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 5 January 2023

Jundong He and Xinguang Lv

The purpose of this study is to modify the FDM 3D printer to print with polystyrene (PS) microspheres as the printing material, thus enabling bottom-up structural color printing…

Abstract

Purpose

The purpose of this study is to modify the FDM 3D printer to print with polystyrene (PS) microspheres as the printing material, thus enabling bottom-up structural color printing and evaluating structural color printing.

Design/methodology/approach

This study chose a range of different heated bed temperatures to determine a suitable temperature for accelerating the self-assembly of photonic crystals and printing structural colors on various substrates. In addition, this study enhanced the structural color by doping PS microspheres with different contents of Acid Black 210 dye and evaluated the color-enhanced structural color by eye and spectrophotometer under different light sources.

Findings

The results show that the modified 3D printer can be used for structural color printing, and 50°C is determined as the heated bed temperature. There are significant differences in structural colors when printing under different color backgrounds and material substrates, and corresponding suitable substrates should be selected according to the application. The doping of PS microspheres with varying contents of dye results in different color levels of structural color. As with pigment colors, the visual perception of structural color varies when viewed under different light sources.

Originality/value

This paper proposes to print structural colors low-costly, analyze structural colors under substrate and light source conditions, and expand the structural color gamut by enhancing structural colors, which has positive implications for further research on structural colors as printing colors.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 5 April 2024

Rahul Soni, Madhvi Sharma, Ponappa K. and Puneet Tandon

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of…

Abstract

Purpose

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of this paper is to harness SCOBY’s potential to create cost-effective and nourishing food options using the innovative technique of 3D printing.

Design/methodology/approach

This work presents a comparative analysis of the printability of SCOBY with blends of wheat flour, with a focus on the optimization of process variables such as printing composition, nozzle height, nozzle diameter, printing speed, extrusion motor speed and extrusion rate. Extensive research was carried out to explore the diverse physical, mechanical and rheological properties of food ink.

Findings

Among the ratios tested, SCOBY, with SCOBY:wheat flour ratio at 1:0.33 exhibited the highest precision and layer definition when 3D printed at 50 and 60 mm/s printing speeds, 180 rpm motor speed and 0.8 mm nozzle with a 0.005 cm3/s extrusion rate, with minimum alteration in colour.

Originality/value

Food layered manufacturing (FLM) is a novel concept that uses a specialized printer to fabricate edible objects by layering edible materials, such as chocolate, confectionaries and pureed fruits and vegetables. FLM is a disruptive technology that enables the creation of personalized and texture-tailored foods, incorporating desired nutritional values and food quality, using a variety of ingredients and additions. This research highlights the potential of SCOBY as a viable material for 3D food printing applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 8 December 2022

Hoa Vo

This study aims to explore the impact of experiencing virtual reality (VR) and three-dimensional (3D) printing during the design process on the creativity of interior design…

Abstract

Purpose

This study aims to explore the impact of experiencing virtual reality (VR) and three-dimensional (3D) printing during the design process on the creativity of interior design students in a luminaire design project.

Design/methodology/approach

This study used the case-study approach within the context of a nine-week luminaire design project. Collected data included self-reported interest and engagement of students from a Qualtrics questionnaire and the ratings of their creativity via the Creative Product Semantic Scale (CPSS) with two judges.

Findings

Descriptive statistics from the Qualtrics questionnaire indicated an overall high level of student interest and engagement with the VR and 3D printing learning experience. Paired t-tests from CPSS ratings of the two judges showed a moderate increase in novelty and a significant increase in style with the introduction of VR and 3D printing technologies, respectively.

Research limitations/implications

Spearman’s correlations (rho) showed no statistical evidence for the relationships between CPSS ratings for creativity and students’ self-reported interest and engagement in VR and 3D printing learning experience.

Practical implications

Ample access time to VR technology and sufficient control over the 3D printing process are important for effective applications of Industry 4.0 technologies in organizations.

Social implications

This study dissected the confounding variables in its results as practical considerations for intergrading VR and 3D printing technologies for organizations in Industry 4.0.

Originality/value

This study acknowledged VR and 3D printing technologies as simulants for interest and engagement, which benefit creativity.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 10 of 69