Search results

1 – 10 of over 4000
Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4528

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1439

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 30 November 2021

Fei Tong, Jie Yang, Meng Qiang Duan, Xu Fei Ma and Gao Chao Li

The purpose of this article is to understand the current research status and future development trends in the field of numerical simulation on rock mass grouting.

Abstract

Purpose

The purpose of this article is to understand the current research status and future development trends in the field of numerical simulation on rock mass grouting.

Design/methodology/approach

This article first searched the literature database (EI, Web of Science, CNKI, etc.) for keywords related to the numerical simulation of rock mass grouting to obtain the initial literature database. Then, from the initial database, several documents with strong relevance to the numerical simulation theme of rock mass grouting and high citation rate were selected; some documents from the references were selected as supplements, forming the sample database of this review study (a total of 90 articles). Finally, through sorting out the relationship among the literature, this literature review was carried out.

Findings

The numerical simulation of rock mass grouting is mainly based on the porous media model and the fractured media model. It has experienced the development process from Newtonian fluid to non-Newtonian fluid, from time-invariant viscosity to time-varying viscosity, and from generalized theoretical model to engineering application model. Based on this, this article summarizes four scientific problems that need to be solved in the future in this research field: the law of grout distribution at the cross fissures, the grout diffusion mechanism under multi-field coupling, more accurate grouting theoretical model and simulation technology with strong engineering applicability.

Originality/value

This research systematically analyzes the current research status and shortcomings of numerical simulation on rock mass grouting, summarizes four key issues in the future development of this research field and provides new ideas for the future research on numerical simulation on rock mass grouting.

Details

Engineering Computations, vol. 39 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Open Access
Article
Publication date: 5 February 2024

Krištof Kovačič, Jurij Gregorc and Božidar Šarler

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Abstract

Purpose

This study aims to develop an experimentally validated three-dimensional numerical model for predicting different flow patterns produced with a gas dynamic virtual nozzle (GDVN).

Design/methodology/approach

The physical model is posed in the mixture formulation and copes with the unsteady, incompressible, isothermal, Newtonian, low turbulent two-phase flow. The computational fluid dynamics numerical solution is based on the half-space finite volume discretisation. The geo-reconstruct volume-of-fluid scheme tracks the interphase boundary between the gas and the liquid. To ensure numerical stability in the transition regime and adequately account for turbulent behaviour, the k-ω shear stress transport turbulence model is used. The model is validated by comparison with the experimental measurements on a vertical, downward-positioned GDVN configuration. Three different combinations of air and water volumetric flow rates have been solved numerically in the range of Reynolds numbers for airflow 1,009–2,596 and water 61–133, respectively, at Weber numbers 1.2–6.2.

Findings

The half-space symmetry allows the numerical reconstruction of the dripping, jetting and indication of the whipping mode. The kinetic energy transfer from the gas to the liquid is analysed, and locations with locally increased gas kinetic energy are observed. The calculated jet shapes reasonably well match the experimentally obtained high-speed camera videos.

Practical implications

The model is used for the virtual studies of new GDVN nozzle designs and optimisation of their operation.

Originality/value

To the best of the authors’ knowledge, the developed model numerically reconstructs all three GDVN flow regimes for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 34 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 December 2005

K. Li, B.Q. Li, J. Handa and H.C. de Groh

The quality of crystals grown in space can be diversely affected by the melt flows induced by g‐jitter associated with a space vehicle. This paper presents a full…

Abstract

Purpose

The quality of crystals grown in space can be diversely affected by the melt flows induced by g‐jitter associated with a space vehicle. This paper presents a full three‐dimensional (3D) transient finite element analysis of the complex fluid flow and heat and mass transfer phenomena in a simplified Bridgman crystal growth configuration under the influence of g‐jitter perturbations and magnetic fields.

Design/methodology/approach

The model development is based on the Galerkin finite element solution of the magnetohydrodynamic governing equations describing the thermal convection and heat and mass transfer in the melt. A physics‐based re‐numbering algorithm is used to make the formidable 3D simulations computationally feasible. Simulations are made using steady microgravity, synthetic and real g‐jitter data taken during a space flight.

Findings

Numerical results show that g‐jitter drives a complex, 3D, time dependent thermal convection and that velocity spikes in response to real g‐jitter disturbances in space flights, resulting in irregular solute concentration distributions. An applied magnetic field provides an effective means to suppress the deleterious convection effects caused by g‐jitter. Based on the simulations with applied magnetic fields of various strengths and orientations, the magnetic field aligned with the thermal gradient provides an optimal damping effect, and the stronger magnetic field is more effective in suppressing the g‐jitter induced convection. While the convective flows and solute transport are complex and truly 3D, those in the symmetry plane parallel to the direction of g‐jitter are essentially two‐dimensional (2D), which may be approximated well by the widely used 2D models.

Originality/value

The physics‐based re‐numbering algorithm has made possible the large scale finite element computations for 3D g‐jitter flows in a magnetic field. The results indicate that an applied magnetic field can be effective in suppressing the g‐jitter driven flows and thus enhance the quality of crystals grown in space.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 15 no. 8
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1991

A.I. ADAMSONE and B.S. POLSKY

A half‐implicit absolutely stable method for 3D simulation of the transient processes in semiconductor devices is proposed. The calculations of transient processes in bipolar…

Abstract

A half‐implicit absolutely stable method for 3D simulation of the transient processes in semiconductor devices is proposed. The calculations of transient processes in bipolar transistor were carried out and were compared with the results of 2D simulation.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 10 no. 3
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 9 April 2018

Masoud Morvarid, Ali Rezghi, Alireza Riasi and Mojtaba Haghighi Yazdi

Analysis of fast transient flow in water pipe systems is an important issue for the prevention of unfavorable pressure oscillations and severe damage to the pipelines. This paper…

Abstract

Purpose

Analysis of fast transient flow in water pipe systems is an important issue for the prevention of unfavorable pressure oscillations and severe damage to the pipelines. This paper aims to present the performance of three-dimensional (3D) simulation of laminar water hammer caused by fast closure of valve.

Design/methodology/approach

The viscoelastic behavior of pipe wall is mathematically modeled by using the rheological model of Maxwell. The arbitrary Lagrangian–Eulerian (ALE) method is also used to simulate fluid–structure interaction. In this method, unlike the classical water hammer theory, the acoustic wave velocity is calculated during the numerical simulations and therefore it is not predetermined.

Findings

Investigating the velocity profiles and the shear stress diagrams for transient flow in elastic pipe showed that the strong effect of viscous forces on the near wall region in conjunction with the influence of inertial forces in the central region of the pipe leads to creation of reverse flow near the pipe wall. Comparing the numerical results obtained for elastic pipe with those of viscoelastic pipe revealed that during transient condition, the viscoelastic wall absorbs the energy of fluid and therefore pressure fluctuations of viscoelastic pipe are damped more quickly. Moreover, the 3D simulation of water hammer confirmed the plane wave hypothesis of water hammer.

Originality/value

The 3D Navier–Stokes equations are solved considering the viscoelasticity of the pipe and the ALE method using the software package of COMSOL Multiphysics.

Details

World Journal of Engineering, vol. 15 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 4 July 2016

José I.V. Sena, Cedric Lequesne, L Duchene, Anne-Marie Habraken, Robertt A.F. Valente and Ricardo J Alves de Sousa

Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between…

Abstract

Purpose

Numerical simulation of the single point incremental forming (SPIF) processes can be very demanding and time consuming due to the constantly changing contact conditions between the tool and the sheet surface, as well as the nonlinear material behaviour combined with non-monotonic strain paths. The purpose of this paper is to propose an adaptive remeshing technique implemented in the in-house implicit finite element code LAGAMINE, to reduce the simulation time. This remeshing technique automatically refines only a portion of the sheet mesh in vicinity of the tool, therefore following the tool motion. As a result, refined meshes are avoided and consequently the total CPU time can be drastically reduced.

Design/methodology/approach

SPIF is a dieless manufacturing process in which a sheet is deformed by using a tool with a spherical tip. This dieless feature makes the process appropriate for rapid-prototyping and allows for an innovative possibility to reduce overall costs for small batches, since the process can be performed in a rapid and economic way without expensive tooling. As a consequence, research interest related to SPIF process has been growing over the last years.

Findings

In this work, the proposed automatic refinement technique is applied within a reduced enhanced solid-shell framework to further improve numerical efficiency. In this sense, the use of a hexahedral finite element allows the possibility to use general 3D constitutive laws. Additionally, a direct consideration of thickness variations, double-sided contact conditions and evaluation of all components of the stress field are available with solid-shell and not with shell elements. Additionally, validations by means of benchmarks are carried out, with comparisons against experimental results.

Originality/value

It is worth noting that no previous work has been carried out using remeshing strategies combined with hexahedral elements in order to improve the computational efficiency resorting to an implicit scheme, which makes this work innovative. Finally, it has been shown that it is possible to perform accurate and efficient finite element simulations of SPIF process, resorting to implicit analysis and continuum elements. This is definitively a step-forward on the state-of-art in this field.

Details

Engineering Computations, vol. 33 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 14 November 2016

Jiang Hu

The multi-scale numerical simulation method, able to represent the complexity of the random structures and capture phase degradation, is an effective way to investigate the…

Abstract

Purpose

The multi-scale numerical simulation method, able to represent the complexity of the random structures and capture phase degradation, is an effective way to investigate the long-term behavior of concrete in service and bridges the gap between research on the material and on the structural level. However, the combined chemical-physical deterioration mechanisms of concrete remain a challenging task. The purpose of this paper is to investigate the degradation mechanism of concrete at the waterline in cold regions induced by combined calcium leaching and frost damage.

Design/methodology/approach

With the help of the NIST’s three-dimensional (3D) hydration model and the random aggregate model, realistic 3D representative volume elements (RVEs) of concrete at the micro-, the meso-, and the macro-scales can be reconstructed. The boundary problem method is introduced to compute the homogenized mechanical properties for both sound and damaged RVEs. According to the damage characteristics, the staggering method including a random dissolution model and a thermo-mechanical coupling model is developed to simulate the synergy deterioration effects of interacted calcium leaching and frost attacks. The coupled damage procedure for the frost damage process is based on the hydraulic pressure theory and the ice lens growth theory considering the relationship between the frozen temperature and the radius of the capillary pore. Finally, regarding calcium leaching as the leading role in actual engineering, the numerical methodology for combined leaching and frost damage on concrete property is proposed using a successive multi-scale method.

Findings

On the basis of available experimental data, this methodology is employed to explore the deterioration process. The results agree with the experimental ones to some extent, chemical leaching leads to the nucleation of some micro-cracks (i.e. damage), and consequently, to the decrease of the frost resistance.

Originality/value

It is demonstrated that the multi-scale numerical methodology can capture potential aging and deterioration evolution processes, and can give an insight into the macroscopic property degradation of concrete under long-term aggressive conditions.

Details

Multidiscipline Modeling in Materials and Structures, vol. 12 no. 4
Type: Research Article
ISSN: 1573-6105

Keywords

Open Access
Article
Publication date: 2 March 2023

Kartik Venkatraman, Stéphane Moreau, Julien Christophe and Christophe Schram

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating…

1420

Abstract

Purpose

The purpose of the paper is to predict the aerodynamic performance of a complete scale model H-Darrieus vertical axis wind turbine (VAWT) with end plates at different operating conditions. This paper aims at understanding the flow physics around a model VAWT for three different tip speed ratios corresponding to three different flow regimes.

Design/methodology/approach

This study achieves a first three-dimensional hybrid lattice Boltzmann method/very large eddy simulation (LBM-VLES) model for a complete scaled model VAWT with end plates and mast using the solver PowerFLOW. The power curve predicted from the numerical simulations is compared with the experimental data collected at Erlangen University. This study highlights the complexity of the turbulent flow features that are seen at three different operational regimes of the turbine using instantaneous flow structures, mean velocity, pressure iso-contours, blade loading and skin friction plots.

Findings

The power curve predicted using the LBM-VLES approach and setup provides a good overall match with the experimental power curve, with the peak and drop after the operational point being captured. Variable turbulent flow structures are seen over the azimuthal revolution that depends on the tip speed ratio (TSR). Significant dynamic stall structures are seen in the upwind phase and at the end of the downwind phase of rotation in the deep stall regime. Strong blade wake interactions and turbulent flow structures are seen inside the rotor at higher TSRs.

Research limitations/implications

The computational cost and time for such high-fidelity simulations using the LBM-VLES remains expensive. Each simulation requires around a week using supercomputing facilities. Further studies need to be performed to improve analytical VAWT models using inputs/calibration from high fidelity simulation databases. As a future work, the impact of turbulent and nonuniform inflow conditions that are more representative of a typical urban environment also needs to be investigated.

Practical implications

The LBM methodology is shown to be a reliable approach for VAWT power prediction. Dynamic stall and blade wake interactions reduce the aerodynamic performance of a VAWT. An ideal operation close to the peak of the power curve should be favored based on the local wind resource, as this point exhibits a smoother variation of forces improving operational performance. The 3D flow features also exhibit a significant wake asymmetry that could impact the optimal layout of VAWT clusters to increase their power density. The present work also highlights the importance of 3D simulations of the complete model including the support structures such as end plates and mast.

Social implications

Accurate predictions of power performance for Darrieus VAWTs could help in better siting of wind turbines thus improving return of investment and reducing levelized cost of energy. It could promote the development of onsite electricity generation, especially for industrial sites/urban areas and renew interest for VAWT wind farms.

Originality/value

A first high-fidelity simulation of a complete VAWT with end plates and supporting structures has been performed using the LBM approach and compared with experimental data. The 3D flow physics has been analyzed at different operating regimes of the turbine. These physical insights and prediction capabilities of this approach could be useful for commercial VAWT manufacturers.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 4000