Search results

1 – 10 of 125
Article
Publication date: 19 January 2024

Kenneth Lawani, Farhad Sadeghineko, Michael Tong and Mehmethan Bayraktar

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D…

68

Abstract

Purpose

The purpose of this study is to explore the suggestions that construction processes could be considerably improved by integrating building information modelling (BIM) with 3D laser scanning technologies. This case study integrated 3D laser point cloud scans with BIM to explore the effects of BIM adoption on ongoing construction project, whilst evaluating the utility of 3D laser scanning technology for producing structural 3D models by converting point cloud data (PCD) into BIM.

Design/methodology/approach

The primary data acquisition adopted the use of Trimble X7 laser scanning process, which is a set of data points in the scanned space that represent the scanned structure. The implementation of BIM with the 3D PCD to explore the precision and effectiveness of the construction processes as well as the as-built condition of a structure was precisely captured using the 3D laser scanning technology to recreate accurate and exact 3D models capable of being used to find and fix problems during construction.

Findings

The findings indicate that the integration of BIM and 3D laser scanning technology has the tendency to mitigate issues such as building rework, improved project completion times, reduced project cost, enhanced interdisciplinary communication, cooperation and collaboration amongst the project duty holders, which ultimately enhances the overall efficiency of the construction project.

Research limitations/implications

The acquisition of data using 3D laser scanner is usually conducted from the ground. Therefore, certain aspects of the building could potentially disturb data acquisition; for example, the gable and sections of eaves (fascia and soffit) could be left in a blind spot. Data acquisition using 3D laser scanner technology takes time, and the processing of the vast amount of data acquired is laborious, and if not carefully analysed, could result in errors in generated models. Furthermore, because this was an ongoing construction project, material stockpiling and planned construction works obstructed and delayed the seamless capture of scanned data points.

Originality/value

These findings highlight the significance of integrating BIM and 3D laser scanning technology in the construction process and emphasise the value of advanced data collection methods for effectively managing construction projects and streamlined workflows.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 July 2023

Ruochen Zeng, Jonathan J.S. Shi, Chao Wang and Tao Lu

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built…

Abstract

Purpose

As laser scanning technology becomes readily available and affordable, there is an increasing demand of using point cloud data collected from a laser scanner to create as-built building information modeling (BIM) models for quality assessment, schedule control and energy performance within construction projects. To enhance the as-built modeling efficiency, this study explores an integrated system, called Auto-Scan-To-BIM (ASTB), with an aim to automatically generate a complete Industry Foundation Classes (IFC) model consisted of the 3D building elements for the given building based on its point cloud without requiring additional modeling tools.

Design/methodology/approach

ASTB has been developed with three function modules. Taking the scanned point data as input, Module 1 is built on the basis of the widely used region segmentation methodology and expanded with enhanced plane boundary line detection methods and corner recalibration algorithms. Then, Module 2 is developed with a domain knowledge-based heuristic method to analyze the features of the recognized planes, to associate them with corresponding building elements and to create BIM models. Based on the spatial relationships between these building elements, Module 3 generates a complete IFC model for the entire project compatible with any BIM software.

Findings

A case study validated the ASTB with an application with five common types of building elements (e.g. wall, floor, ceiling, window and door).

Originality/value

First, an integrated system, ASTB, is developed to generate a BIM model from scanned point cloud data without using additional modeling tools. Second, an enhanced plane boundary line detection method and a corner recalibration algorithm are developed in ASTB with high accuracy in obtaining the true surface planes. At last, the research contributes to develop a module, which can automatically convert the identified building elements into an IFC format based on the geometry and spatial relationships of each plan.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 23 August 2022

Peter Dawson, Jack Brink, Alireza Farrokhi, Fengman Jia and Derek Lichti

Designing and implementing effective strategies for managing heritage resources throughout the world has become critically important as the impacts of climate change and…

Abstract

Purpose

Designing and implementing effective strategies for managing heritage resources throughout the world has become critically important as the impacts of climate change and human-caused destruction are increasingly felt. Of particular importance is the ability to identify and track fast- and slow-moving processes associated with weathering, erosion and the movement or removal of heritage objects by natural and human agents. In this paper, the authors demonstrate how 3D laser scanning can be used to detect and monitor changes to the Okotoks Erratic “Big Rock” Provincial Historic Resource in Alberta, Canada, over a period of 7 years.

Design/methodology/approach

Terrestrial laser scanning surveys of the Okotoks Erratic “Big Rock” Provincial Historic Resource were undertaken in 2013, 2016 and 2020. Registration was used to place the three epochs of point clouds into a unique datum for comparison using the cloud-to-cloud distance function in Cloud Compare.

Findings

The movement/repositioning of rocks around the base of the erratic, the emergence of “unofficial” paths and changes to interpretive trails and fencing were all identified at the site over the time period of the study.

Practical implications

Current conservation at the Okotoks Big Rock focus primarily on the rock art panels that are scattered over the erratic. The results of this study indicate they should be broadened so that the geological integrity of the site, which is intrinsically linked to its cultural value, can also be maintained.

Originality/value

This is the first study the authors are aware of that utilizes terrestrial laser scanning + change detection analysis to identify and track changes to a heritage site over a period as long as 7 years.

Details

Journal of Cultural Heritage Management and Sustainable Development, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2044-1266

Keywords

Article
Publication date: 15 January 2024

Godfred Fobiri, Innocent Musonda and Franco Muleya

Digital data acquisition is crucial for operations in the digital transformation era. Reality capture (RC) has made an immeasurable contribution to various fields, especially in…

Abstract

Purpose

Digital data acquisition is crucial for operations in the digital transformation era. Reality capture (RC) has made an immeasurable contribution to various fields, especially in the built environment. This paper aims to review RC applications, potentials, limitations and the extent to which RC can be adopted for cost monitoring of construction projects.

Design/methodology/approach

A mixed-method approach, using Bibliometric analysis and the PRISMA framework, was used to review and analyse 112 peer-reviewed journal articles from the Scopus and Web of Science databases.

Findings

The study reveals RC has been applied in various areas in the built environment, but health and safety, cost and labour productivity monitoring have received little or no attention. It is proposed that RC can significantly support cost monitoring owing to its ability to acquire accurate and quick digital as-built 3D point cloud data, which contains rich measurement points for the valuation of work done.

Research limitations/implications

The study’s conclusions are based only on the Scopus and Web of Science data sets. Only English language documents were approved, whereas others may be in other languages. The research is a non-validation of findings using empirical data to confirm the data obtained from RC literature.

Practical implications

This paper highlights the importance of RC for cost monitoring in construction projects, filling knowledge gaps and enhancing project outcomes.

Social implications

The implementation of RC in the era of the digital revolution has the potential to improve project delivery around the world today. Every project’s success is largely determined by the availability of precise and detailed digital data. RC applications have pushed for more sustainable design, construction and operations in the built environment.

Originality/value

The study has given research trends on the extent of RC applications, potentials, limitations and future directions.

Details

Journal of Engineering, Design and Technology , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 19 January 2024

Mohamed Marzouk and Mohamed Zaher

Facility management gained profound importance due to the increasing complexity of different systems and the cost of operation and maintenance. However, due to the increasing…

56

Abstract

Purpose

Facility management gained profound importance due to the increasing complexity of different systems and the cost of operation and maintenance. However, due to the increasing complexity of different systems, facility managers may suffer from a lack of information. The purpose of this paper is to propose a new facility management approach that links segmented assets to the vital data required for managing facilities.

Design/methodology/approach

Automatic point cloud segmentation is one of the most crucial processes required for modelling building facilities. In this research, laser scanning is used for point cloud acquisition. The research utilises region growing algorithm, colour-based region-growing algorithm and Euclidean cluster algorithm.

Findings

A case study is worked out to test the accuracy of the considered point cloud segmentation algorithms utilising metrics precision, recall and F-score. The results indicate that Euclidean cluster extraction and region growing algorithm revealed high accuracy for segmentation.

Originality/value

The research presents a comparative approach for selecting the most appropriate segmentation approach required for accurate modelling. As such, the segmented assets can be linked easily with the data required for facility management.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

Article
Publication date: 2 April 2024

Yi Liu, Rui Ning, Mingxin Du, Shuanghe Yu and Yan Yan

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork…

Abstract

Purpose

The purpose of this paper is to propose an new online path planning method for porcine belly cutting. With the proliferation in demand for the automatic systems of pork production, the development of efficient and robust meat cutting algorithms are hot issues. The uncertain and dynamic nature of the online porcine belly cutting imposes a challenge for the robot to identify and cut efficiently and accurately. Based on the above challenges, an online porcine belly cutting method using 3D laser point cloud is proposed.

Design/methodology/approach

The robotic cutting system is composed of an industrial robotic manipulator, customized tools, a laser sensor and a PC.

Findings

Analysis of experimental results shows that by comparing with machine vision, laser sensor-based robot cutting has more advantages, and it can handle different carcass sizes.

Originality/value

An image pyramid method is used for dimensionality reduction of the 3D laser point cloud. From a detailed analysis of the outward and inward cutting errors, the outward cutting error is the limiting condition for reducing the segments by segmentation algorithm.

Details

Industrial Robot: the international journal of robotics research and application, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 21 February 2019

Vishal Singh

The purpose of this paper is to conduct a critical analysis of the commonly projected visions on the future of built environment, focusing on transformative research. The primary…

2014

Abstract

Purpose

The purpose of this paper is to conduct a critical analysis of the commonly projected visions on the future of built environment, focusing on transformative research. The primary question is will the construction sector be able to make the projected transformative leap even if the history of technology adoption in construction suggests otherwise? And, what role can academic research play?

Design/methodology/approach

This paper is based on a reflective research and qualitative review of academic articles, white papers and reported projections for the future of construction. The reflections are based on discussions with colleagues and students, including thought experiments.

Findings

There is a general agreement across various sources about the key technical and social drivers for the future of construction. However, these projections seem to be emanating from industry insiders, and more diversity and creativity is needed in exploring alternative possibilities.

Research limitations/implications

The paper should be useful for researchers in assessing their research strategy, especially those aiming to focus on the future of construction and transformative research. The findings of this paper suggest the need for collaboration and explorations with diverse disciplines, including those that may not appear immediately connected to digital construction.

Practical implications

The paper should be useful for individuals and organizations, especially start-ups that are seeking novel opportunities to disrupt the future of construction.

Originality/value

The originality and value of this research lies in a timely critique of the commonly projected trends in the future of digital construction. The use of reflective research and thought experiments emphasizes the need for divergent thinking and creative research methods in construction research.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

Article
Publication date: 6 October 2022

Ahmed Gouda Mohamed and Amr Mousa

Current research efforts exhibit a surge imperative for a building information modelling (BIM) approach that embodies a repository of all relevant data of existing building…

Abstract

Purpose

Current research efforts exhibit a surge imperative for a building information modelling (BIM) approach that embodies a repository of all relevant data of existing building components while monitoring and consistently recording numerous components’ functions throughout its lifecycle, especially in Egypt. This research paper aims to develop an integrated as-is BIM-facility management (FM) information model for the existing building’s components via a case study, depicting a repository for historical data and knowledge amassed from inspections and conveying maintenance decisions automatically during the FM practices.

Design/methodology/approach

The developed approach pursues four successive steps: data acquisition and processing of building components; components recognition from point clouds; modelling scanned point clouds; and quick response code information transfer to BIM components.

Findings

The proposed approach incorporates the as-is BIM with the building components’ as-is FM information to portray a repository for historical data and knowledge collected from inspections to proactively benefit facility managers in simplifying, expediting and enhancing maintenance decisions automatically during FM practices.

Originality/value

This paper presents a digital alternative to manual maintenance recordkeeping concerning building components to retrieve their as-is and historical data using a case study in Egypt. This paper proposes a broad scan to as-is information BIM approach for the existing building’s components to condone maintenance interventions using a versatile, affordable, readily available and multi-functional method for scanning the building’s components using a handheld tool.

Details

Journal of Facilities Management , vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1472-5967

Keywords

Article
Publication date: 19 April 2024

Yifan Guo, Yanling Guo, Jian Li, Yangwei Wang, Deyu Meng, Haoyu Zhang and Jiaming Dai

Selective laser sintering (SLS) is an essential technology in the field of additive manufacturing. However, SLS technology is limited by the traditional point-laser sintering…

Abstract

Purpose

Selective laser sintering (SLS) is an essential technology in the field of additive manufacturing. However, SLS technology is limited by the traditional point-laser sintering method and has reached the bottleneck of efficiency improvement. This study aims to develop an image-shaped laser sintering (ISLS) system based on a digital micromirror device (DMD) to address this problem. The ISLS system uses an image-shaped laser light source with a size of 16 mm × 25.6 mm instead of the traditional SLS point-laser light source.

Design/methodology/approach

The ISLS system achieves large-area image-shaped sintering of polymer powder materials by moving the laser light source continuously in the x-direction and updating the sintering pattern synchronously, as well as by overlapping the splicing of adjacent sintering areas in the y-direction. A low-cost composite powder suitable for the ISLS system was prepared using polyether sulfone (PES), pinewood and carbon black (CB) powders as raw materials. Large-sized samples were fabricated using composite powder, and the microstructure, dimensional accuracy, geometric deviation, density, mechanical properties and feasible feature sizes were evaluated.

Findings

The experimental results demonstrate that the ISLS system is feasible and can print large-sized parts with good dimensional accuracy, acceptable geometric deviations, specific small-scale features and certain density and mechanical properties.

Originality/value

This study has achieved the transition from traditional point sintering mode to image-shaped surface sintering mode. It has provided a new approach to enhance the system performance of traditional SLS.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 22 September 2022

Michael C.P. Sing, Sophie, Y.Y. Luk, Ken H.C. Chan, Henry J. Liu and Richard Humphrey

In Hong Kong, over 20,000 private residential buildings will be 50 plus years old by 2039. However, building maintenance has not been owners’ popular interest because of the high…

Abstract

Purpose

In Hong Kong, over 20,000 private residential buildings will be 50 plus years old by 2039. However, building maintenance has not been owners’ popular interest because of the high cost as well as the complexities in justifying whether the quantities and prices of the maintenance works are reasonable. This paper therefore aims to validate the practicality of adopting Scan-to-BIM: Terrestrial Laser Scan (TLS) and Building Information Modelling (BIM) to perform quantity take-offs (QTO) for estimating building maintenance costs.

Design/methodology/approach

A 64-year-old tenement building was selected to conduct a case study. In this instance, the building had undergone a Scan-to-BIM survey approach to generate QTO for the bills of quantities for external painting works. The Scan-to-BIM approach includes site visit, positioning of scanning equipment, assignment of circular scan routes, point cloud registration and identification of residual error. After that, time, cost and quality data were logged into contrast with QTO on as-built plans for external wall plastering works.

Findings

The “time”, “cost” and “quality” of the Scan-to BIM practice were then examined and compared with the prevailing practices of manual measurements on as-built drawings. As noted from the results, the initial cost of Scan-to BIM is high, owing to the cost of equipment, software and capable available operators. However, the authors identified that the time and cost can be significantly minimised by developing and implementing efficient practices such as preparing a detailed scan plan, equipping modeller with quantity surveying knowledge, using automated object recognition and 5D BIM software packages such as Vico Office and CostX.

Practical implications

The upshot is that Scan-to-BIM could be one of the measures to advance the clarity in the QTO and estimated price of the maintenance projects.

Originality/value

The practicability of Scan-to-BIM has received limited attention on existing building maintenance project. The Scan-to-BIM approach was examined using a case building of a 64-year-old tenement building. The approach demonstrated in this research study is promised to advance the clarity in the QTO and estimated price of maintenance project.

Details

International Journal of Building Pathology and Adaptation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2398-4708

Keywords

1 – 10 of 125