Search results

1 – 10 of 373
Open Access
Article
Publication date: 28 August 2021

Luca Gabriele De Vivo Nicoloso, Joshua Pelz, Herb Barrack and Falko Kuester

There are over 40 million amputees globally with more than 185,000 Americans losing their limbs every year. For most of the world, prosthetic devices remain too expensive and…

2749

Abstract

Purpose

There are over 40 million amputees globally with more than 185,000 Americans losing their limbs every year. For most of the world, prosthetic devices remain too expensive and uncomfortable. This paper aims to outline advancements made by a multidisciplinary research group, interested in advancing the restoration of human motion through accessible lower limb prostheses.

Design/methodology/approach

Customization, comfort and functionality are the most important metrics reported by prosthetists and patients. The work of this paper presents the design and manufacturing of a custom made, cost-effective and functional three-dimensional (3D) printed transtibial prosthesis monocoque design. The design of the prosthesis integrates 3D imaging, modelling and optimization techniques coupled with additive manufacturing.

Findings

The successful fabrication of a functional monocoque prosthesis through 3D printing indicates the workflow may be a solution to the worldwide accessibility crisis. The digital workflow developed in this work offers great potential for providing prosthetic devices to rural communities, which lack access to skilled prosthetic physicians. The authors found that using the workflow together with 3D printing, this study can create custom monocoque prostheses (Figure 16). These prostheses are comfortable, functional and properly aligned. In comparison with traditional prosthetic devices, the authors slowered the average cost, weight and time of production by 95%, 55% and 95%, respectively.

Social implications

This novel digital design and manufacturing workflow has the potential to democratize and globally proliferate access to prosthetic devices, which restore the patient’s mobility, quality of life and health. LIMBER’s toolbox can reach places where proper prosthetic and orthotic care is not available. The digital workflow reduces the cost of making custom devices by an order of magnitude, enabling broader reach, faster access and improved comfort. This is particularly important for children who grow quickly and need new devices every few months or years, timely access is both physically and psychologically important.

Originality/value

In this manuscript, the authors show the application of digital design techniques for fabricating prosthetic devices. The proposed workflow implements several advantageous changes and, most importantly, digitally blends the three components of a transtibial prosthesis into a single, 3D printable monocoque device. The development of a novel unibody transtibial device that is properly aligned and adjusted digitally, greatly reduces the number of visits an amputee must make to a clinic to have a certified prosthetist adjust and modify their prosthesis. The authors believe this novel workflow has the potential to ease the worldwide accessibility crisis for prostheses.

Details

Rapid Prototyping Journal, vol. 27 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 5 April 2022

Yixiang Jiang

At airport security checkpoints, baggage screening is aimed to prevent transportation of prohibited and potentially dangerous items. Observing the projection images generated by…

Abstract

Purpose

At airport security checkpoints, baggage screening is aimed to prevent transportation of prohibited and potentially dangerous items. Observing the projection images generated by X-rays scanner is a critical method. However, when multiple objects are stacked on top of each other, distinguishing objects only by a two-dimensional picture is difficult, which prompts the demand for more precise imaging technology to be investigated for use. Reconstructing from 2D X-ray images to 3D-computed tomography (CT) volumes is a reliable solution.

Design/methodology/approach

To more accurately distinguish the specific contour shape of items when stacked, multi-information fusion network (MFCT-GAN) based on generative adversarial network (GAN) and U-like network (U-NET) is proposed to reconstruct from two biplanar orthogonal X-ray projections into 3D CT volumes. The authors use three modules to enhance the reconstruction qualitative and quantitative effects, compared with the original network. The skip connection modification (SCM) and multi-channels residual dense block (MRDB) enable the network to extract more feature information and learn deeper with high efficiency; the introduction of subjective loss enables the network to focus on the structural similarity (SSIM) of images during training.

Findings

On account of the fusion of multiple information, MFCT-GAN can significantly improve the value of quantitative indexes and distinguish contour explicitly between different targets. In particular, SCM enables features more reasonable and accurate when expanded into three dimensions. The appliance of MRDB can alleviate problem of slow optimization during the late training period, as well as reduce the computational cost. The introduction of subjective loss guides network to retain more high-frequency information, which makes the rendered CT volumes clearer in details.

Originality/value

The authors' proposed MFCT-GAN is able to restore the 3D shapes of different objects greatly based on biplanar projections. This is helpful in security check places, where X-ray images of stacked objects need to be distinguished from the presence of prohibited objects. The authors adopt three new modules, SCM, MRDB and subjective loss, as well as analyze the role the modules play in 3D reconstruction. Results show a significant improvement on the reconstruction both in objective and subjective effects.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 3 no. 1
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 18 January 2022

Srinimalan Balakrishnan Selvakumaran and Daniel Mark Hall

The purpose of this paper is to investigate the feasibility of an end-to-end simplified and automated reconstruction pipeline for digital building assets using the design science…

1446

Abstract

Purpose

The purpose of this paper is to investigate the feasibility of an end-to-end simplified and automated reconstruction pipeline for digital building assets using the design science research approach. Current methods to create digital assets by capturing the state of existing buildings can provide high accuracy but are time-consuming, expensive and difficult.

Design/methodology/approach

Using design science research, this research identifies the need for a crowdsourced and cloud-based approach to reconstruct digital building assets. The research then develops and tests a fully functional smartphone application prototype. The proposed end-to-end smartphone workflow begins with data capture and ends with user applications.

Findings

The resulting implementation can achieve a realistic three-dimensional (3D) model characterized by different typologies, minimal trade-off in accuracy and low processing costs. By crowdsourcing the images, the proposed approach can reduce costs for asset reconstruction by an estimated 93% compared to manual modeling and 80% compared to locally processed reconstruction algorithms.

Practical implications

The resulting implementation achieves “good enough” reconstruction of as-is 3D models with minimal tradeoffs in accuracy compared to automated approaches and 15× cost savings compared to a manual approach. Potential facility management use cases include the issue and information tracking, 3D mark-up and multi-model configurators.

Originality/value

Through user engagement, development, testing and validation, this work demonstrates the feasibility and impact of a novel crowdsourced and cloud-based approach for the reconstruction of digital building assets.

Details

Journal of Facilities Management , vol. 20 no. 3
Type: Research Article
ISSN: 1472-5967

Keywords

Open Access
Article
Publication date: 30 April 2021

Sepehr Alizadehsalehi and Ibrahim Yitmen

The purpose of this research is to develop a generic framework of a digital twin (DT)-based automated construction progress monitoring through reality capture to extended reality…

8934

Abstract

Purpose

The purpose of this research is to develop a generic framework of a digital twin (DT)-based automated construction progress monitoring through reality capture to extended reality (RC-to-XR).

Design/methodology/approach

IDEF0 data modeling method has been designed to establish an integration of reality capturing technologies by using BIM, DTs and XR for automated construction progress monitoring. Structural equation modeling (SEM) method has been used to test the proposed hypotheses and develop the skill model to examine the reliability, validity and contribution of the framework to understand the DRX model's effectiveness if implemented in real practice.

Findings

The research findings validate the positive impact and importance of utilizing technology integration in a logical framework such as DRX, which provides trustable, real-time, transparent and digital construction progress monitoring.

Practical implications

DRX system captures accurate, real-time and comprehensive data at construction stage, analyses data and information precisely and quickly, visualizes information and reports in a real scale environment, facilitates information flows and communication, learns from itself, historical data and accessible online data to predict future actions, provides semantic and digitalize construction information with analytical capabilities and optimizes decision-making process.

Originality/value

The research presents a framework of an automated construction progress monitoring system that integrates BIM, various reality capturing technologies, DT and XR technologies (VR, AR and MR), arraying the steps on how these technologies work collaboratively to create, capture, generate, analyze, manage and visualize construction progress data, information and reports.

Details

Smart and Sustainable Built Environment, vol. 12 no. 1
Type: Research Article
ISSN: 2046-6099

Keywords

Open Access
Article
Publication date: 4 January 2021

Radosław Wajman

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous…

2414

Abstract

Purpose

Crystallization is the process widely used for components separation and solids purification. The systems for crystallization process evaluation applied so far, involve numerous non-invasive tomographic measurement techniques which suffers from some reported problems. The purpose of this paper is to show the abilities of three-dimensional Electrical Capacitance Tomography (3D ECT) in the context of non-invasive and non-intrusive visualization of crystallization processes. Multiple aspects and problems of ECT imaging, as well as the computer model design to work with the high relative permittivity liquids, have been pointed out.

Design/methodology/approach

To design the most efficient (from a mechanical and electrical point of view) 3D ECT sensor structure, the high-precise impedance meter was applied. The three types of sensor were designed, built, and tested. To meet the new concept requirements, the dedicated ECT device has been constructed.

Findings

It has been shown that the ECT technique can be applied to the diagnosis of crystallization. The crystals distribution can be identified using this technique. The achieved measurement resolution allows detecting the localization of crystals. The usage of stabilized electrodes improves the sensitivity of the sensor and provides the images better suitable for further analysis.

Originality/value

The dedicated 3D ECT sensor construction has been proposed to increase its sensitivity in the border area, where the crystals grow. Regarding this feature, some new algorithms for the potential field distribution and the sensitivity matrix calculation have been developed. The adaptation of the iterative 3D image reconstruction process has also been described.

Details

Sensor Review, vol. 41 no. 1
Type: Research Article
ISSN: 0260-2288

Keywords

Open Access
Article
Publication date: 10 December 2021

Pingan Zhu, Chao Zhang and Jun Zou

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the…

Abstract

Purpose

The purpose of the work is to provide a comprehensive review of the digital image correlation (DIC) technique for those who are interested in performing the DIC technique in the area of manufacturing.

Design/methodology/approach

No methodology was used because the paper is a review article.

Findings

no fundings.

Originality/value

Herein, the historical development, main strengths and measurement setup of DIC are introduced. Subsequently, the basic principles of the DIC technique are outlined in detail. The analysis of measurement accuracy associated with experimental factors and correlation algorithms is discussed and some useful recommendations for reducing measurement errors are also offered. Then, the utilization of DIC in different manufacturing fields (e.g. cutting, welding, forming and additive manufacturing) is summarized. Finally, the current challenges and prospects of DIC in intelligent manufacturing are discussed.

Details

Journal of Intelligent Manufacturing and Special Equipment, vol. 2 no. 2
Type: Research Article
ISSN: 2633-6596

Keywords

Open Access
Article
Publication date: 1 August 2019

Fusong Yuan, Yao Sun, Lei Zhang and Yuchun Sun

The purpose of this paper is to establish a chair-side design and production method for a tooth-supported fixed implant guide and to evaluate its accuracy.

Abstract

Purpose

The purpose of this paper is to establish a chair-side design and production method for a tooth-supported fixed implant guide and to evaluate its accuracy.

Design/methodology/approach

Three-dimensional (3D) data of the alveolar ridge, adjacent teeth and antagonistic teeth were acquired from models of the edentulous area of 30 patients. The implant guides were then constructed using self-developed computer-aided design software and chair-side fused deposition modelling 3D-printing and positioned on a dental model. A model scanner was used to acquire 3D data of the positioned implant guides, and the overall error was then evaluated.

Findings

The overall error was 0.599 ± 0.146 mm (n = 30). One-way ANOVA revealed no statistical differences among the 30 implant guides. The gap between the occlusal surface of the teeth covering and the tissue surface of the implant guide was measured. The maximum gap after positioning of the implant guide was 0.341 mm (mean, 0.179 ± 0.019 mm). The implanted axes of the printed implant guide and designed guide were compared in terms of overall, lateral and angular error, which were 0.104 ± 0.004 mm, 0.097 ± 0.003 mm, and 2.053° ± 0.017°, respectively.

Originality/value

The results of this study demonstrated that the accuracy of a new chair-side tooth-supported fixed implant guide can satisfy clinical requirements.

Details

Rapid Prototyping Journal, vol. 25 no. 5
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 12 May 2020

Barbara Dziurdzia, Maciej Sobolewski, Janusz Mikołajek and Sebastian Wroński

This paper aims to investigate voiding phenomena in solder joints under thermal pads of light-emitting diodes (LEDs) assembled in mass production environment by reflow soldering…

2461

Abstract

Purpose

This paper aims to investigate voiding phenomena in solder joints under thermal pads of light-emitting diodes (LEDs) assembled in mass production environment by reflow soldering by using seven low-voiding lead-free solder pastes.

Design/methodology/approach

The solder pastes investigated are of SAC305 type, Innolot type or they are especially formulated by the manufacturers on the base of (SnAgCu) alloys with addition of some alloying elements such as Bi, In, Sb and Ti to provide low-void contents. The SnPb solder paste – OM5100 – was used as a benchmark. The solder paste coverage of LED solder pads was chosen as a measure of void contents in solder joints because of common usage of this parameter in industry practice.

Findings

It was found that the highest coverage and, related to it, the least void contents are in solder joints formed with the pastes LMPA-Q and REL61, which are characterized by the coverage of mean value 93.13% [standard deviation (SD) = 2.72%] and 92.93% (SD = 2.77%), respectively. The void diameters reach the mean value equal to 0.061 mm (SD = 0.044 mm) for LMPA-Q and 0.074 mm (SD = 0.052 mm) for REL61. The results are presented in the form of histograms, plot boxes and X-ray images. Some selected solder joints were observed with 3D computer tomography.

Originality/value

The statistical analyses are carried out on the basis of 2D X-ray images with using Origin software. They enable to compare features of various solder pastes recommended by manufacturers as low voiding. The results might be useful for solder paste manufacturers or electronic manufacturing services.

Details

Soldering & Surface Mount Technology, vol. 32 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Open Access
Article
Publication date: 28 July 2020

Xisto L. Travassos, Sérgio L. Avila and Nathan Ida

Ground Penetrating Radar is a multidisciplinary Nondestructive Evaluation technique that requires knowledge of electromagnetic wave propagation, material properties and antenna…

5882

Abstract

Ground Penetrating Radar is a multidisciplinary Nondestructive Evaluation technique that requires knowledge of electromagnetic wave propagation, material properties and antenna theory. Under some circumstances this tool may require auxiliary algorithms to improve the interpretation of the collected data. Detection, location and definition of target’s geometrical and physical properties with a low false alarm rate are the objectives of these signal post-processing methods. Basic approaches are focused in the first two objectives while more robust and complex techniques deal with all objectives at once. This work reviews the use of Artificial Neural Networks and Machine Learning for data interpretation of Ground Penetrating Radar surveys. We show that these computational techniques have progressed GPR forward from locating and testing to imaging and diagnosis approaches.

Details

Applied Computing and Informatics, vol. 17 no. 2
Type: Research Article
ISSN: 2634-1964

Keywords

Open Access
Article
Publication date: 30 September 2019

Laura D. Vallejo-Melgarejo, Ronald G. Reifenberger, Brittany A. Newell, Carlos A. Narváez-Tovar and José M. Garcia-Bravo

An Autodesk Ember three-dimensional (3D) printer was used to print optical components from Clear PR48 photocurable resin. The cured PR48 was characterized by the per cent of light…

3577

Abstract

Purpose

An Autodesk Ember three-dimensional (3D) printer was used to print optical components from Clear PR48 photocurable resin. The cured PR48 was characterized by the per cent of light transmitted and the index of refraction, which was measured with a prism spectrometer. Lenses and diffraction gratings were also printed and characterized. The focal length of the printed lenses agreed with predictions based on the thin lens equation. The periodicity and effective slit width of the printed gratings were determined from both optical micrographs and fits to the Fraunhofer diffraction equation. This study aims to demonstrate the advantages offered by a layer-by-layer DLP printing process for the manufacture of optical components for use in the visible region of the electromagnetic spectrum.

Design/methodology/approach

A 3D printer was used to print both lenses and diffraction gratings from Standard Clear PR48 photocurable resin. The manufacturing process of the lenses and the diffraction gratings differ mainly in the printing angle with respect to the printer x-y-axes. The transmission diffraction gratings studied here were manufactured with nominal periodicities of 10, 25 and 50 µm. The aim of this study was to optically determine the effective values for the distance between slits, d, and the effective width of the slits, w, and to compare these values with the printed layer thickness.

Findings

The normalized diffraction patterns measured in this experiment for the printed gratings with layer thickness of 10, 25 and 50 µm are shown by the solid dots in Figures 8(a)-(c). Also shown as a red solid line are the fits to the experimental diffraction data. The effective values of d and w obtained from fitting the data are compared to the nominal layer thickness of the printed gratings. The effective distance between slits required to fit the diffraction patterns are well approximated by the printed layer thickness to within 14, 4 and 16 per cent for gratings with a nominal 10, 25 and 50 µm layer thickness, respectively.

Research limitations/implications

Chromatic aberration is present in all polymer lenses, and the authors have not attempted to characterize it in this study. These materials could be used for achromatic lenses if paired with a crown-type material in an achromatic doublet configuration, because this would correct the chromatic aberration issues. It is worthwhile to compare the per cent transmission in cured PR48 resin (approximately 80 per cent) to the percent transmission found in common optical materials like BK7 (approximately 92 per cent) over the visible region. The authors attribute the lower transmission in PR48 to a combination of surface scattering and increased absorption. At the present time, the authors do not know what fraction of the lower transmission is related to the surface quality resulting from sample polishing.

Practical implications

There are inherent limitations to the 3D manufacturing process that affect the performance of lenses. Approximations to a curved surface in the design software, the printing resolution of the Autodesk Ember printer and the anisotropy due to printing in layers are believed to be the main issues. The performance of the lenses is also affected by internal imperfections in the printed material, in particular the presence of bubbles and the inclusion of debris like dust or fibers suspended in air. In addition, the absorption of wavelengths in the blue/ultraviolet produces an undesirable yellowing in any printed part.

Originality/value

One of the most interesting results from this study was the manufacture of diffraction gratings using 3D printing. An analysis of the diffraction pattern produced by these printed gratings yielded estimates for the slit periodicity and effective slit width. These gratings are unique because the effective slit width fills the entire volume of the printed part. This aspect makes it possible to integrate two or more optical devices in a single printed part. For example, a lens combined with a diffraction grating now becomes possible.

Details

Rapid Prototyping Journal, vol. 25 no. 10
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 373