Search results

1 – 10 of 456
To view the access options for this content please click here
Article

Terry Lerch, Sean Anthony and Tanya Domina

The purpose of this paper is to validate the accuracy of point cloud data generated from a 3D body scanner.

Abstract

Purpose

The purpose of this paper is to validate the accuracy of point cloud data generated from a 3D body scanner.

Design/methodology/approach

A female dress form was scanned with an X‐ray computed tomography (CT) system and a 3D body scanning system. The point cloud data from four axial slices of the body scan (BS) data were compared with the corresponding axial slices from the CT data. Length and cross‐sectional area measurements of each slice were computed for each scanning technique.

Findings

The point cloud data from the body scanner were accurate to at least 2.0 percent when compared with the CT data. In many cases, the length and area measurements from the two types of scans varied by less than 1.0 percent.

Research limitations/implications

Only two length measurements and a cross‐sectional area measurement were compared for each axial slice, resulting in a good first attempt of validation of the BS data. Additional methods of comparison should be employed for complete validation of the data. The dress form was scanned only once with each scanning device, so little can be said about the repeatability of the results.

Practical implications

Accuracy of the point cloud data from the 3D body scanner indicates that the main issues for the use of body scanners as anthropometric measurement tools are those of standardization, feature locations, and positioning of the subject.

Originality/value

Comparisons of point cloud data from a 3D body scanner with CT data had not previously been performed, and these results indicate that the point cloud data are accurate to at least 2.0 percent.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 5
Type: Research Article
ISSN: 0955-6222

Keywords

To view the access options for this content please click here
Article

Liu Chi and Richard Kennon

Aims to check the validity of measurements of dynamic postures recorded by a body scanner.

Abstract

Purpose

Aims to check the validity of measurements of dynamic postures recorded by a body scanner.

Design/methodology/approach

Measurements between various anatomical landmarks have been taken both manually and using a 3D body scanner so that the validity of the measurements might be assessed when dynamic postures are adopted. Mechanical measurements of changes in the body surface dimensions have been compared with figures produced by a body scanner for both the standard natural position and for five dynamic postures, which must be accommodated when designing high‐performance garments.

Findings

Although the 3D body scanner collects data almost instantaneously and without physical contact with the target surface, the readings taken in respect of dynamic poses showed significant variations from manually‐taken measurements, with discrepancies as large as 6.8 cm over a 16 cm distance.

Research limitations/implications

The research has only been carried out on a very limited number of subjects. However, significant differences between manual and automatic body measurements are clearly demonstrated.

Practical implications

The research showed that as there are as yet no universally‐accepted conventions for 3D scanner measurements, the results appear to be optimised for the natural anatomical position. Bodyscanners are not well‐suited to taking measurements of dynamic postures expected in sporting activities.

Originality/value

Measurements of anthropometric landmarks for high‐performance activities have not previously been assessed, and these results usefully indicate the limitations of current 3D scanning technology.

Details

International Journal of Clothing Science and Technology, vol. 18 no. 3
Type: Research Article
ISSN: 0955-6222

Keywords

To view the access options for this content please click here
Article

Cynthia L. Istook and Su‐Jeong Hwang

The ability to customise garments for fit is directly tied to the availability of a comprehensive, accurate set of measurements. To obtain accurate physical measurements…

Abstract

The ability to customise garments for fit is directly tied to the availability of a comprehensive, accurate set of measurements. To obtain accurate physical measurements, a basic knowledge and set of skills are required that are not often found in the average salesperson at a retail clothing outlet. The development of three‐dimensional body‐scanning technologies may have significant potential for use in the apparel industry, particularly for customisation or mass customisation strategies to be employed. The purpose of this study was to review all the 3D body scanning systems currently available and to determine the underlying principles that allow these systems to work. Specifications of each system were compared in order to provide some direction for further research into the integration of these systems with current apparel CAD pattern design or pattern generation technologies.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. 5 no. 2
Type: Research Article
ISSN: 1361-2026

Keywords

To view the access options for this content please click here
Article

Karla P. Simmons and Cynthia L. Istook

With the use of 3D body scanners, body measurement techniques can be non‐contact, instant, and accurate. However, how each scanner establishes landmarks and takes the…

Abstract

With the use of 3D body scanners, body measurement techniques can be non‐contact, instant, and accurate. However, how each scanner establishes landmarks and takes the measurements should be established so that standardization of the data capture can be realized. The purpose of this study was to compare body‐scanning measurement extraction methods and terminology with traditional anthropometric methods. A total of 21 measurements were chosen as being critical to the design of well‐fitting garments. Current body scanners were analyzed for availability of information, willingness of company cooperation, and relevance to applications in the apparel industry. On each of the 21 measurements, standard measurement procedure was identified for three different scanners: [TC]2, Cyberware, and SYMCAD. Of the 21 measures in the study, [TC]2 was the scanner that had the most measures identified for the study and also had the capability of producing many more with specific application for apparel.

Details

Journal of Fashion Marketing and Management: An International Journal, vol. 7 no. 3
Type: Research Article
ISSN: 1361-2026

Keywords

To view the access options for this content please click here
Article

Miyeon Lee, Dong Il Yoo and Sungmin Kim

The purpose of this paper is to develop a relatively inexpensive and easily movable three-dimensional (3D) body scanner.

Abstract

Purpose

The purpose of this paper is to develop a relatively inexpensive and easily movable three-dimensional (3D) body scanner.

Design/methodology/approach

Multiple depth perception cameras and a turntable were used to form the hardware and a client-server computer network was used to control the hardware.

Findings

A portable and inexpensive yet quite accurate body scanner system has been developed.

Research limitations/implications

The turntable mechanism and semi-automatic model alignment caused some error.

Practical implications

This scanner is expected to facilitate the acquisition of 3D human body or garment data easily for various research projects.

Social implications

Many researchers might have an easy access to 3D data of large object such as body or whole garment.

Originality/value

Inexpensive yet expandable scanning system has been developed using readily available components.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

To view the access options for this content please click here
Article

Ivana Špelic

In order to present a significant usage of the computer-aided design (CAD)/computer-aided manufacturing (CAM) systems in the apparel and textile industry, the current…

Abstract

Purpose

In order to present a significant usage of the computer-aided design (CAD)/computer-aided manufacturing (CAM) systems in the apparel and textile industry, the current literature has been observed. Although the CAD/CAM systems have also been increasingly applied to all fields apparel and textile manufacturing for the last few decades, improving the precision, productivity and the organization of the information flow, they have not been fully utilized in these industrial fields. The paper aims to discuss these issues.

Design/methodology/approach

The paper is structured in three main sections showing the vast applicability of the CAD/CAM systems, the benefits provided by them and the future trend in their development.

Findings

Although the initial development of the CAD/CAM systems strived to completely eliminate manual and time-consuming operations, they have not been accepted in practice due to their inflexibility at making changes and the time needed for regenerating a complex parametric model. The textile and apparel industries show slow progress in acquiring the CAD/CAM systems.

Originality/value

This CAD/CAM technology enabled the customization in the design process according to individual needs and directed the textile and the apparel industry to moving into new directions such as the mass customization to personalization. The paper makes clear that although this technological concept is rather old, the use of the CAD/CAM systems will inevitably broaden in terms of applicability to new production stages.

Details

International Journal of Clothing Science and Technology, vol. 32 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

To view the access options for this content please click here
Article

Arzu Vuruskan and Susan P. Ashdown

The design and testing of clothing for activewear requires complex assessments of the suitability of the clothing when the body is in motion. The purpose of this paper is…

Abstract

Purpose

The design and testing of clothing for activewear requires complex assessments of the suitability of the clothing when the body is in motion. The purpose of this paper is to investigate full body 3D scanning of active body poses in order to develop “watertight” digital models and half-scale dress forms to facilitate design, pattern making and fit analyses. Issues around creating a size set of scans in order to facilitate fit testing of activewear across a size range were also explored.

Design/methodology/approach

Researchers experimented to discover effective methods for 3D body capture in the cycling position and reconstruction of the body in a reliable way. In total, 25 cyclists were scanned and size representatives were selected from these participants. Methods of creating half-scale forms were developed that make optimum use of modern materials and technologies. Half-scale dress forms were created in two active positions in a range of sizes for fit testing and design. A set of half-scale and full-scale bike shorts in two styles were manufactured and fit tested on the half-scale forms compared to fit testing on the scan participants to test validity of this method of assessing fit.

Findings

Issues in capturing and reconstructing areas occluded in the scanning process, and reconstructing the interface with the bicycle seat were addressed. Active digital forms were developed across the size range, from which both digital avatars and physical mannequins were developed for pattern development and fit testing. The production and use of precisely half-scaled tools for garment testing was achieved and validated by comparing fit test results in active positions on the half-scale forms and on participants who were scanned to create these forms.

Originality/value

Design modifications for active positions to date are based on linear measurements alone, which do not define the 3D body adequately. Despite much research using body scanners, only limited data exist on the body in active poses, and the concept of creating half-scale forms by scanning fit models throughout the size range in active body positions is a novel concept. The progress made in resolving material and process experiments in creating the actual half-scale forms, and testing their suitability for fit testing provides a basis for further research aimed at developing similar dress forms for other activewear garments.

Details

International Journal of Clothing Science and Technology, vol. 29 no. 6
Type: Research Article
ISSN: 0955-6222

Keywords

To view the access options for this content please click here
Article

Moudi Almousa

The purpose of this paper was to develop the first standard apparel sizing system for Saudi adult female population originating from anthropometric study using…

Abstract

Purpose

The purpose of this paper was to develop the first standard apparel sizing system for Saudi adult female population originating from anthropometric study using three-dimensional (3D) body scanner.

Design/methodology/approach

An anthropometric survey was conducted in four regions of the country where 1,074 participants between the ages of 18 and 63 were scanned using white light 3D body scanner. K-means cluster analysis using stature and hip girth as control variables produced the proposed sizing system, whereas regression equations were used to determine the parameters between measurements of different sizes.

Findings

Three sizing groups with 12 size designations in each totalling 36 size designations were identified. The sizing charts developed in this study show that key girth measurement ranges of chest, waist and hips are comparable to that of ISO standard and (ASTM D5585-11), while the Saudi female population falls into shorter height brackets than ISO and ASTM standards.

Originality/value

In this study, the first anthropometric database for Saudi female population was established using 3D body scanning technology, and a sizing system for this target population was developed.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

To view the access options for this content please click here
Article

Hein Daanen and Sung‐Ae Hong

New techniques are required to link 3D whole body scans to manufacturing techniques to allow for the mass‐customization of clothes. This study aims to compare two methods…

Abstract

Purpose

New techniques are required to link 3D whole body scans to manufacturing techniques to allow for the mass‐customization of clothes. This study aims to compare two methods of producing skirts based on 3D whole body scans.

Design/methodology/approach

Three females participated in the study. They were scanned with an accurate 3D whole body scanner. A set of relevant 1D measures was automatically derived from the 3D scan. The measures were incorporated in a skirt pattern and the skirt was made from jeans material. The second method was based on triangulation of the scanned waist‐to‐hip part. The points in the 3D scan were first converted to triangles and these triangles were thereafter merged with neighboring triangles of similar orientation until about 40 triangles remained. These triangles were sewn together to form a “patchwork”‐skirt. All females performed fit tests afterwards.

Findings

The fit of the 3D‐generated patchwork skirt was much better than the fit of the skirt generated by the 1D scan‐derived measures. In the latter case, two of the three skirts were too wide because the scan‐derived hip circumference exceeded the manually derived values. For the 3D generated skirt, it was necessary to enlarge the triangles with a factor of 1.025 to achieve optimal fit.

Originality/value

As far as is known, this is the first study that reports a direct conversion of a 3D scan to clothing without interference of clothing patterns. The study shows that it is possible to generate a fitting patchwork skirt based on 3D scans; the intermediate step of using 1D measures derived from 3D scans is shown to be error‐prone.

Details

International Journal of Clothing Science and Technology, vol. 20 no. 1
Type: Research Article
ISSN: 0955-6222

Keywords

To view the access options for this content please click here
Article

Chin‐Man Chen

The purpose of this study is to evaluate fit of the basic garments made for Taiwanese female students with various figure characteristics. The basic garments are produced…

Abstract

Purpose

The purpose of this study is to evaluate fit of the basic garments made for Taiwanese female students with various figure characteristics. The basic garments are produced according to patterns derived from the PDS 2000 and APDS‐3D systems.

Design/methodology/approach

This study recruited ten Taiwanese female subjects who represented various figure characteristics. After scanning each subject, the body measurements with additional functional ease were manually entered into the APDS‐3D system accompanied with the PDS 2000 system to generate the block patterns. These patterns were used to make basic garments worn on the subjects for fit evaluations. T‐test and one‐way ANOVA were employed to investigate if any statistically significant differences between figure characteristics of subjects exist.

Findings

After statistical analysis, results showed that the percentage of tolerance allowed by the system in preventing incorrect measurements has to be revised and more measurements have to be included into the APDS‐3D system. Furthermore, female students who exhibit multiple figure variations complicate fitting problems. For example, sloped‐shoulder subjects with narrow shoulders and forward stance generate the problem of extra fabric gathering at the shoulder tips as well as looseness at the upper chest. Therefore, figure variations have to be analyzed in a future study.

Research limitations/implications

The convenient sample with limited size does not allow generalization of figure variations associated with fit problems in all colleges or universities located in Taiwan.

Originality/value

Few researchers have analyzed fit problems on garments made for females with figure variations, but none of them use 3D body scanners in combination with computer‐aided design systems to test fit on basic garments for females with various physical characteristics.

Details

International Journal of Clothing Science and Technology, vol. 19 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

1 – 10 of 456