Search results

1 – 10 of 113
Article
Publication date: 20 November 2023

Annada Prasad Moharana, Ratnesh Raj and Amit Rai Dixit

The industrial application of continuous glass fabric-reinforced polymer composites (GFRPCs) is growing; however, the manufacturing boundedness of complex structures and the high…

Abstract

Purpose

The industrial application of continuous glass fabric-reinforced polymer composites (GFRPCs) is growing; however, the manufacturing boundedness of complex structures and the high cost of molds restrict their use. This research proposes a three-dimensional (3 D) printing process for GFRPCs that allows low-cost and rapid fabrication of complex composite parts.

Design/methodology/approach

The composite is manufactured using a digital light processing (DLP) based Vat-photopolymerization (VPP) process. For the composites, suitable resin material and glass fabrics are chosen based on their strength, stiffness, and printability. Jacob's working curve characterizes the curing parameters for adequate adhesion between the matrix and fabrics. The tensile and flexural properties were examined using UTM. The fabric distribution and compactness of the cured resin were analyzed in scanning electron microscopy.

Findings

The result showed that the object could print at a glass fabric content of 40 volume%. In DLP-based VPP printing technology, the adequate exposure time was found to be 30 seconds for making a GFRPC. The tensile strength and Young's modulus values were increased by 5.54 and 8.81 times, respectively than non-reinforced cured specimens. The flexural strength and modulus were also effectively increased to 2.8 and 3 times more than the neat specimens. In addition, the process is found to help fabricate the functional component.

Originality/value

The experimental procedure to fabricate GFRPC specimens through DLP-based AM is a spectacular experimental approach.

Book part
Publication date: 1 February 2024

Özge Çaylak Dönmez and Burhan Sevim

Three-dimensional (3D) printing has great potential in the food industry. While 3D printing technology offers customised food products to consumers, it also allows producers to…

Abstract

Three-dimensional (3D) printing has great potential in the food industry. While 3D printing technology offers customised food products to consumers, it also allows producers to develop new products using a wide variety of alternative food ingredients, modernise the production process and carry out environmentally friendly production. This research aims to determine the attitudes of students towards 3D foods who are studying in the Department of Gastronomy and Culinary Arts, as they are both consumers and examine different food processing systems and use them in the field of application. As a result of the study, it was identified that the participants believed that 3D printing is a great modern technology that allows the development of new foods, that it will bring benefit to us in the future, reduce the cost of food and food waste, increase the sustainability of food and that they see it as environmentally friendly. In addition, it was determined that the participants did not think that 3D-printed foods were disgusting; they found these foods reliable, could try them in the future and were excited to experience them.

Article
Publication date: 5 April 2024

Rahul Soni, Madhvi Sharma, Ponappa K. and Puneet Tandon

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of…

Abstract

Purpose

In pursuit of affordable and nutrient-rich food alternatives, the symbiotic culture of bacteria and yeast (SCOBY) emerged as a selected food ink for 3D printing. The purpose of this paper is to harness SCOBY’s potential to create cost-effective and nourishing food options using the innovative technique of 3D printing.

Design/methodology/approach

This work presents a comparative analysis of the printability of SCOBY with blends of wheat flour, with a focus on the optimization of process variables such as printing composition, nozzle height, nozzle diameter, printing speed, extrusion motor speed and extrusion rate. Extensive research was carried out to explore the diverse physical, mechanical and rheological properties of food ink.

Findings

Among the ratios tested, SCOBY, with SCOBY:wheat flour ratio at 1:0.33 exhibited the highest precision and layer definition when 3D printed at 50 and 60 mm/s printing speeds, 180 rpm motor speed and 0.8 mm nozzle with a 0.005 cm3/s extrusion rate, with minimum alteration in colour.

Originality/value

Food layered manufacturing (FLM) is a novel concept that uses a specialized printer to fabricate edible objects by layering edible materials, such as chocolate, confectionaries and pureed fruits and vegetables. FLM is a disruptive technology that enables the creation of personalized and texture-tailored foods, incorporating desired nutritional values and food quality, using a variety of ingredients and additions. This research highlights the potential of SCOBY as a viable material for 3D food printing applications.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 24 January 2024

Nirmal Singh, Harmanjit Singh Banga, Jaswinder Singh and Rajnish Sharma

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by…

Abstract

Purpose

This paper aims to prompt ideas amongst readers (especially librarians) about how they can become active partners in knowledge dissemination amongst concerned user groups by implementing 3D printing technology under the “Makerspace.”

Design/methodology/approach

The paper provides a brief account of various tools and techniques used by veterinary and animal sciences institutions for information dissemination amongst the stakeholders and associated challenges with a focus on the use of 3D printing technology to overcome the bottlenecks. An overview of the 3D printing technology has been provided following the instances of use of this novel technology in veterinary and animal sciences. An initiative of the University Library, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, to harness the potential of this technology in disseminating information amongst livestock stakeholders has been discussed.

Findings

3D printing has the potential to enhance learning in veterinary and animal sciences by providing hands-on exposure to various anatomical structures, such as bones, organs and blood vessels, without the need for a cadaver. This approach enhances students’ spatial understanding and helps them better understand anatomical concepts. Libraries can enhance their visibility and can contribute actively to knowledge dissemination beyond traditional library services.

Originality/value

The ideas about how to harness the potential of 3D printing in knowledge dissemination amongst livestock sector stakeholders have been elaborated. This promotes creativity amongst librarians enabling them to think how they can engage in knowledge dissemination thinking out of the box.

Details

Library Hi Tech News, vol. 41 no. 2
Type: Research Article
ISSN: 0741-9058

Keywords

Article
Publication date: 22 April 2024

Pınar Şenel, Hacer Turhan and Erkan Sezgin

Three-dimentional (3D) food printers are innovative technologies that contribute to healthy, personalized and stainable nutrition. However, many consumers are still vigilant about…

Abstract

Purpose

Three-dimentional (3D) food printers are innovative technologies that contribute to healthy, personalized and stainable nutrition. However, many consumers are still vigilant about 3D printed food in the age of technology. The purpose of this study is to develop a scale and propose a model for consumption preferences associated with 3D-printed food (3DPF).

Design/methodology/approach

The developed questionnaire was handed to 192 Z and Y generation participants (Data1) for the exploratory factor analysis stage initially. Then, the questionnaire was handed to another group of 165 participants (Data 2) for verification by confirmatory factor analysis. Finally, the dimensions “healthy and personalized nutrition,” “sustainable nutrition” and “socio-cultural nutrition” were analyzed by structural equation modeling.

Findings

The results indicated that there was a high relationship between “healthy and personalized nutrition” and “sustainable nutrition” as well as between “sustainable nutrition” and “socio-cultural nutrition” when 3DPF was considered.

Originality/value

The study would contribute to the new survey area related to 3DPF by presenting a scale and proposing a model. Also, the study reveals which nutritional factors affect the Z and Y generation’s consumption of 3DPF. In this context, the study aims to make marketing contributions to the food production, restaurant and hotel sectors.

研究目的

3D食品打印机是创新技术, 有助于健康、个性化和可持续的营养。然而, 在科技时代, 许多消费者仍然对3D打印食品保持警惕。本研究的目的是开发一个刻画与3D打印食品相关的消费偏好的量表并提出一个模型。

研究方法

本研究首先将开发的问卷交给192名Z和Y世代参与者(数据1)进行探索性因素分析阶段。然后, 将问卷交给另一组165名参与者(数据2)通过验证性因素分析进行验证。最后, 通过结构方程模型分析了“健康和个性化营养”、“可持续营养”和“社会文化营养”这三个维度。

研究发现

结果表明, 在考虑3D打印食品时, “健康和个性化营养”与“可持续营养”之间以及“可持续营养”与“社会文化营养”之间存在很高的关系。

研究创新

本研究通过提出一个量表并提出一个模型, 为与3D打印食品相关的新调查领域做出了贡献。此外, 研究揭示了影响Z和Y世代对3D打印食品消费的营养因素。在这一背景下, 本研究旨在为食品生产、餐厅和酒店等领域做出营销贡献。

Details

Journal of Hospitality and Tourism Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1757-9880

Keywords

Article
Publication date: 17 April 2024

Vidyut Raghu Viswanath, Shivashankar Hiremath and Dundesh S. Chiniwar

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings…

11

Abstract

Purpose

The purpose of this study, most recent advancements in threedimensional (3D) printing have focused on the fabrication of components. It is typical to use different print settings, such as raster angle, infill and orientation to improve the 3D component qualities while fabricating the sample using a 3D printer. However, the influence of these factors on the characteristics of the 3D parts has not been well explored. Owing to the effect of the different print parameters in fused deposition modeling (FDM) technology, it is necessary to evaluate the strength of the parts manufactured using 3D printing technology.

Design/methodology/approach

In this study, the effect of three print parameters − raster angle, build orientation and infill − on the tensile characteristics of 3D-printed components made of three distinct materials − acrylonitrile styrene acrylate (ASA), polycarbonate ABS (PC-ABS) and ULTEM-9085 − was investigated. A variety of test items were created using a commercially accessible 3D printer in various configurations, including raster angle (0°, 45°), (0°, 90°), (45°, −45°), (45°, 90°), infill density (solid, sparse, sparse double dense) and orientation (flat, on-edge).

Findings

The outcome shows that variations in tensile strength and force are brought on by the effects of various printing conditions. In all possible combinations of the print settings, ULTEM 9085 material has a higher tensile strength than ASA and PC-ABS materials. ULTEM 9085 material’s on-edge orientation, sparse infill, and raster angle of (0°, −45°) resulted in the greatest overall tensile strength of 73.72 MPa. The highest load-bearing strength of ULTEM material was attained with the same procedure, measuring at 2,932 N. The tensile strength of the materials is higher in the on-edge orientation than in the flat orientation. The tensile strength of all three materials is highest for solid infill with a flat orientation and a raster angle of (45°, −45°). All three materials show higher tensile strength with a raster angle of (45°, −45°) compared to other angles. The sparse double-dense material promotes stronger tensile properties than sparse infill. Thus, the strength of additive components is influenced by the combination of selected print parameters. As a result, these factors interact with one another to produce a high-quality product.

Originality/value

The outcomes of this study can serve as a reference point for researchers, manufacturers and users of 3D-printed polymer material (PC-ABS, ASA, ULTEM 9085) components seeking to optimize FDM printing parameters for tensile strength and/or identify materials suitable for intended tensile characteristics.

Details

Rapid Prototyping Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1355-2546

Keywords

Open Access
Article
Publication date: 26 March 2024

Sergio de la Rosa, Pedro F. Mayuet, Cátia S. Silva, Álvaro M. Sampaio and Lucía Rodríguez-Parada

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour…

Abstract

Purpose

This papers aims to study lattice structures in terms of geometric variables, manufacturing variables and material-based variants and their correlation with compressive behaviour for their application in a methodology for the design and development of personalized elastic therapeutic products.

Design/methodology/approach

Lattice samples were designed and manufactured using extrusion-based additive manufacturing technologies. Mechanical tests were carried out on lattice samples for elasticity characterization purposes. The relationships between sample stiffness and key geometric and manufacturing variables were subsequently used in the case study on the design of a pressure cushion model for validation purposes. Differentiated areas were established according to patient’s pressure map to subsequently make a correlation between the patient’s pressure needs and lattice samples stiffness.

Findings

A substantial and wide variation in lattice compressive behaviour was found depending on the key study variables. The proposed methodology made it possible to efficiently identify and adjust the pressure of the different areas of the product to adapt them to the elastic needs of the patient. In this sense, the characterization lattice samples turned out to provide an effective and flexible response to the pressure requirements.

Originality/value

This study provides a generalized foundation of lattice structural design and adjustable stiffness in application of pressure cushions, which can be equally applied to other designs with similar purposes. The relevance and contribution of this work lie in the proposed methodology for the design of personalized therapeutic products based on the use of individual lattice structures that function as independent customizable cells.

Details

Rapid Prototyping Journal, vol. 30 no. 11
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 7 November 2022

Buddhini Ginigaddara, Srinath Perera, Yingbin Feng, Payam Rahnamayiezekavat and Mike Kagioglou

Industry 4.0 is exacerbating the need for offsite construction (OSC) adoption, and this rapid transformation is pushing the boundaries of construction skills towards extensive…

Abstract

Purpose

Industry 4.0 is exacerbating the need for offsite construction (OSC) adoption, and this rapid transformation is pushing the boundaries of construction skills towards extensive modernisation. The adoption of this modern production strategy by the construction industry would redefine the position of OSC. This study aims to examine whether the existing skills are capable of satisfying the needs of different OSC types.

Design/methodology/approach

A critical literature review evaluated the impact of transformative technology on OSC skills. An existing industry standard OSC skill classification was used as the basis to develop a master list that recognises emerging and diminishing OSC skills. The master list recognises 67 OSC skills under six skill categories: managers, professionals, technicians and trade workers, clerical and administrative workers, machinery operators and drivers and labourers. The skills data was extracted from a series of 13 case studies using document reviews and semi-structured interviews with project stakeholders.

Findings

The multiple case study evaluation recognised 13 redundant skills and 16 emerging OSC skills such as architects with building information modelling and design for manufacture and assembly knowledge, architects specialised in design and logistics integration, advanced OSC technical skills, factory operators, OSC estimators, technicians for three dimensional visualisation and computer numeric control operators. Interview findings assessed the current state and future directions for OSC skills development. Findings indicate that the prevailing skills are not adequate to readily relocate construction activities from onsite to offsite.

Originality/value

To the best of the authors’ knowledge, this research is one of the first studies that recognises the major differences in skill requirements for non-volumetric and volumetric OSC types.

Details

Construction Innovation , vol. 24 no. 3
Type: Research Article
ISSN: 1471-4175

Keywords

Article
Publication date: 20 February 2024

Yuran Jin, Xiaolin Zhu, Xiaoxu Zhang, Hui Wang and Xiaoqin Liu

3D printing has been warmly welcomed by clothing enterprises for its customization capacity in recent years. However, such clothing enterprises have to face the digital…

Abstract

Purpose

3D printing has been warmly welcomed by clothing enterprises for its customization capacity in recent years. However, such clothing enterprises have to face the digital transformation challenges brought by 3D printing. Since the business model is a competitive weapon for modern enterprises, there is a research gap between business model innovation and digital transformation challenges for 3D-printing garment enterprises. The aim of the paper is to innovate a new business model for 3D-printing garment enterprises in digital transformation.

Design/methodology/approach

A business model innovation canvas (BMIC), a new method for business model innovation, is used to innovate a new 3D-printing clothing enterprises business model in the context of digital transformation. The business model canvas (BMC) method is adopted to illustrate the new business model. The business model ecosystem is used to design the operating architecture and mechanism of the new business model.

Findings

First, 3D-printing clothing enterprises are facing digital transformation, and they urgently need to innovate new business models. Second, mass customization and distributed manufacturing are important ways of solving the business model problems faced by 3D-printing clothing enterprises in the process of digital transformation. Third, BMIC has proven to be an effective tool for business model innovation.

Research limitations/implications

The new mass deep customization-distributed manufacturing (MDC-DM) business model is universal. As such, it can provide an important theoretical reference for other scholars to study similar problems. The digital transformation background is taken into account in the process of business model innovation. Therefore, this is the first hybrid research that has been focused on 3D printing, garment enterprises, digital transformation and business model innovation. On the other hand, business model innovation is a type of exploratory research, which means that the MDC-DM business model’s application effect cannot be immediately observed and requires further verification in the future.

Practical implications

The new business model MDC-DM is not only applicable to 3D-printing garment enterprises but also to some other enterprises that are either using or will use 3D printing to enhance their core competitiveness.

Originality/value

A new business model, MDC-DM, is created through BMIC, which allows 3D-printing garment enterprises to meet the challenges of digital transformation. In addition, the original canvas of the MDC-DM business model is designed using BMC. Moreover, the ecosystem of the MDC-DM business model is constructed, and its operation mechanisms are comprehensively designed.

Details

European Journal of Innovation Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1460-1060

Keywords

Article
Publication date: 28 March 2024

Monica Puri Sikka, Jameer Aslam Bargir and Samridhi Garg

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in…

Abstract

Purpose

Intense interest has been shown in creating new and effective biocide agents as a result of changes in bacterial isolates, bacterial susceptibility to antibiotics, an increase in patients with burns and wounds and the difficulty of treating infections and antimicrobial resistance. Woven, nonwoven and knitted materials are used to make dressings; however, nonwoven dressings are becoming more popular because of their softness and high absorption capacity. Additionally, textiles have excellent geometrical, physical and mechanical features including three-dimensional structure availability, air, vapor and liquid permeability, strength, extensibility, flexibility and diversity of fiber length, fineness and cross-sectional shapes. It is necessary to treat every burn according to international protocol and along with it has to focus on particular problems of patients and the best possible results.

Design/methodology/approach

The objective of this paper is to conduct a thorough examination of research pertaining to the utilization of textiles, as well as alternative materials and innovative techniques, in the context of burn wound dressings. Through a critical analysis of the findings, this study intends to provide valuable insights that can inform and guide future research endeavors in this field.

Findings

In the past years, there have been several dressings such as xeroform petrolatum gauze, silver-impregnated dressings, biological dressings, hydrocolloid dressings, polyurethane film dressings, silicon-coated nylon dressings, dressings for biosynthetic skin substitutes, hydrogel dressings, newly developed dressings, scaffold bandages, Sorbalgon wound dressing, negative pressure therapy, enzymatic debridement and high-pressure water irrigation developed for the fast healing of burn wounds.

Originality/value

This research conducts a thorough analysis of the role of textiles in modern burn wound dressings.

Details

Research Journal of Textile and Apparel, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 113