Search results

1 – 10 of 37
Article
Publication date: 7 December 2023

Murat Isik, Isa Emami Tabrizi, Raja Muhammad Awais Khan, Mehmet Yildiz, Eda Aydogan and Bahattin Koc

In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and…

Abstract

Purpose

In recent years, additive manufacturing (AM) has started to be used for manufacturing real functional parts and assemblies for critical applications in aerospace, automotive, and machinery industries. Most complex or assembled parts require internal features (IF) such as holes, channels, slots, or guides for locational and mating requirements. Therefore, it is critical to understand and compare the structural and mechanical properties of additively manufactured and conventionally machined IFs.

Design/methodology/approach

In this study, mechanical and microstructural properties of Inconel 718 (Inc718) alloy internal features, manufactured either as-built with AM or machining of additively manufactured (AMed) part thereafter were investigated.

Findings

The results showed that the average ultimate tensile strength (UTS) of additively manufactured center internal feature (AM-IF) is almost analogous to the machined internal feature (M-IF). However, the yield strength of M-IF is greater than that of AM-IF due the greater surface roughness of the internal feature in AM-IF, which is deemed to surpass the effect of microstructure on the mechanical performance. The results of digital image correlation (DIC) analysis suggest that AM-IF and M-IF conditions have similar strain values under the same stress levels but the specimens with as built IF have a more locally ductile region around their IF, which is confirmed by hardness test results. But this does not change global elongation behavior. The microstructural evolution starting from as-built (AB) and heat-treated (HT) samples to specimens with IF are examined. The microstructure of HT specimens has bimodal grain structure with d phase while the AB specimens display a very fine dendritic microstructure with the presence of carbides. Although they both have close values, machined specimens have a higher frequency of finer grains based on SEM images.

Originality/value

It was shown that the concurrent creation of the IF during AM can provide a final part with a preserved ultimate tensile strength and elongation but a decreased yield strength. The variation in UTS of AM-IF increases due to the surface roughness near the internal feature as compared to smooth internal surfaces in M-IF. Hence, the outcomes of this study are believed to be valuable for the industry in terms of determining the appropriate production strategy of parts with IF using AM and postprocessing processes.

Details

Rapid Prototyping Journal, vol. 30 no. 2
Type: Research Article
ISSN: 1355-2546

Keywords

Case study
Publication date: 13 March 2024

Salehin Ahmadi, Ubada Aqeel and Shikha Gera

The learning objectives have been prepared following Bloom’s taxonomy (Bloom et al., 1956). After completing the case study, the students will be able to identify and recall the…

Abstract

Learning outcomes

The learning objectives have been prepared following Bloom’s taxonomy (Bloom et al., 1956). After completing the case study, the students will be able to identify and recall the prerequisites necessary for establishing a pathology laboratory. (knowledge); analyze the micro- and macroenvironmental factors considered by Mr Sabihul Haque in the development of the strategic plan for Healthcare Laboratories (HCL) (knowledge and application); explain the key components of the Porter’s value chain and their significance in the operation of HCL (comprehension and evaluation); use the TOWS analysis to map the internal strengths, weaknesses, opportunities and threats of HCL (application and synthesis); and analyze the challenges faced by protagonist in managing HCL and generate suggestions for addressing the challenges (analysis and synthesis).

Case overview/synopsis

HCL, an enterprise established in 2018 in Sahdeo Khap, Gaya, Bihar, India, aims to provide high-quality pathological diagnostic services in semi-urban and rural areas. This health-care initiative is pioneering, offering pathology services to make high-quality, low-cost diagnostic services accessible in rural India. In rural settings, numerous health-care hurdles make it challenging for individuals to access the care they need. Since its inception, HCL has expanded its reach to connect more areas, facilitating diagnostic services for people in remote regions. The establishment of laboratories in semi-urban areas aims to reduce patient travel time, costs and health risks by bringing services directly to their doorstep. Haque, the chief executive officer of the lab, grappled with multiple challenges, including selecting an appropriate location for the lab, recruiting and retaining skilled workforce, managing logistics supply, collaborating with local health-care providers, dispelling the stigma among the population that superior services are only available in cities and enhancing health literacy in rural communities. Following numerous meetings with Ms Ummati Naiyyer, head of operations, they worked collaboratively to address these challenges, developing a blueprint and future plan to operate services in rural areas. This case study provides insights into the obstacles faced by HCL striving for success in rural areas. It elucidates the beneficial application of the Porter’s value chain, along with an analysis of macro- and microenvironmental factors. Unique challenges such as societal stigma and mistrust are specifically emphasized. Students engaging with this case study will enhance their problem-solving skills through brainstorming and providing recommendations, contributing to potential solutions for HCL’s difficulties.

Complexity academic level

The teaching notes for the HCL case is designed to enhance the learning experience of undergraduate and graduate students within the context of the course. This case study serves as a valuable teaching tool, allowing students to apply theoretical knowledge to real-world scenarios in the health-care industry. The notes provide a framework for instructors to facilitate discussions, encourage critical thinking and promote a deeper understanding of key concepts related to establishing diagnostic laboratories in rural areas.

Supplementary materials

Teaching notes are available for educators only.

Subject code

CSS3: Entrepreneurship.

Details

Emerald Emerging Markets Case Studies, vol. 14 no. 1
Type: Case Study
ISSN: 2045-0621

Keywords

Article
Publication date: 5 May 2022

Dat Van Truong, Song Thanh Quynh Le and Huong Mai Bui

Kapok was well-known for its oleophilic properties, but its mechanical properties and morphology impeded it from forming suitable absorbent materials. This study aims to…

Abstract

Purpose

Kapok was well-known for its oleophilic properties, but its mechanical properties and morphology impeded it from forming suitable absorbent materials. This study aims to demonstrate the process of creating an oil-absorbent web from a blend of treated kapok and polypropylene fibers.

Design/methodology/approach

Kapok fibers were separated from dried fruits, then the wax was removed with an HCl solution at different concentrations. The morphological and structural changes of these fibers were investigated using scanning electron microscopy images. The blending ratios of kapok and polypropylene fibers were 60/40, 70/30 and 80/20, respectively. The fiber blends were fed to a laboratory carding machine to form a web and then consolidated using the heat press technique. The absorption behavior of the formed web was evaluated regarding oil absorption capacity and oil retention capacity according to ASTM 726.

Findings

The results showed that the HCl concentration of 1.0% (wt%) gave the highest wax removal efficiency without damaging the kapok fibers. This study found that oil absorbency is influenced by the fiber blending ratio, web tensile strength and elongation, porosity, oil type and environmental conditions. The oil-absorbency of the web can be re-used for at least 20 cycles.

Research limitations/implications

This study only looked at three types of oils: diesel, kerosene and vegetable oils.

Practical implications

When the problem of oil spills in rivers and seas is growing and causing serious environmental and economic consequences, using physical methods to recover oil spills is the most effective solution.

Originality/value

This research adds to the possibility of using kapok fiber in the form of a web of non-woven fabric for practical purposes.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 23 January 2024

Evrim Baran Aydın, Eyüp Başaran, Sevgi Ateş and Reşit Çakmak

The aim of this study was to investigate the activity of 4-((4-((2-hydroxyethyl)(methyl)amino)benzylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HEMAP), a…

Abstract

Purpose

The aim of this study was to investigate the activity of 4-((4-((2-hydroxyethyl)(methyl)amino)benzylidene) amino)-1,5-dimethyl-2-phenyl-1,2-dihydro-3H-pyrazol-3-one (HEMAP), a Schiff base synthesized and characterized for the first time, to the authors’ knowledge, as a novel inhibitor against corrosion of mild steel (MS) in hydrochloric acid solution.

Design/methodology/approach

HEMAP was characterized by some spectroscopic methods including High-Resolution Mass Spectrometry (HRMS), Proton Nuclear Magnetic Resonance (1H NMR), Carbon-13 (C13) nuclear magnetic resonance (13C NMR) and Fourier Transform Infrared Spectroscopy (FT-IR). Then, the inhibition efficiency of HEMAP on MS in a hydrochloric acid solution was investigated by potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). To explain the inhibition mechanism, the surface charge, adsorption isotherms and thermodynamic parameters of MS in the inhibitor solution were studied.

Findings

EIS tests displayed that the highest inhibition efficiency was calculated approximately as 99.5% for 5 × 10−2 M HEMAP in 1 M HCl solution. The adsorption of HEMAP on the MS surface was found to be compatible with the Langmuir model isotherm. The thermodynamic parameter results showed that the standard free energy of adsorption of HEMAP on the MS surface was found to be more chemical than physical.

Originality/value

This study is important in terms of demonstrating the performance of the first synthesized HEMAP molecule as an inhibitor against the corrosion of MS in acidic media. EIS tests displayed that the highest inhibition efficiency was calculated approximately as 99.5% for 5 × 10−2 M HEMAP in 1 M HCl solution.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 7 December 2021

Santosh Kumar Karri, Markandeya Raju Ponnada and Lakshmi Veerni

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on…

Abstract

Purpose

One of the sources for the increase in the carbon footprint on the earth is the manufacturing of cement, which causes a severer environmental impact. Abundant research is going on to diminish CO2 content in the atmosphere by appropriate utilization of waste by-products of industries. Alkali-activated slag concrete (AASC) is an innovative green new concrete made by complete replacement of cement various supplementary cementitious raw materials. Concrete is a versatile material used in different fields of structures, so it is very important to study the durability in different exposures along with the strength. The purpose of this paper is to study the performance of AASC by incorporating quartz sand as fine aggregate under different exposure conditions.

Design/methodology/approach

The materials for this innovative AASC are selected based on preliminary studies and literature surveys. Based on numerous trials a better performance mix proportion of AASC with quartz sand is developed with 1:2:4 mix proportion, 0.8 alkali Binder ratio, 19 M of NaOH and 50% concentration of Na2SiO3. Subsequently, AASC cubes are prepared and exposed for 3, 7, 14, 28, 56, 90, 112, 180, 252 and 365 days in ambient, acid, alkaline, sulfate, chloride and seawater and tested for compressive strength. In addition, to study the microstructural characteristics, scanning electron microscope (SEM), energy dispersive X-ray analysis and X-ray diffraction analysis was also performed.

Findings

Long-term performance of AASC developed with quartz sand is very good in the ambient, alkaline environment of 5% NaOH and seawater with the highest compressive strength values of 51.8, 50.83 and 64.46, respectively. A decrease in compressive strengths was observed after the age of 14, 56 and 112 days for acid, chloride and sulfate exposure conditions, respectively. SEM image shows a denser microstructure of AASC matrix for ambient, alkaline of 5% NaOH and seawater.

Research limitations/implications

The proposed AASC is prepared with a mix proportion of 1:2:4, so the other proportions of AASC need to verify. In general plain, AASC is not used in practice except in few applications, in this work the effect of reinforced AASC is not checked. The real environmental exposure in fields may not create for AASC, as it was tested in different exposure conditions in the laboratory.

Practical implications

The developed AASC is recommended in practical applications where early strength is required, where the climate is hot, where water is scarce for curing, offshore and onshore constructions exposed to the marine environment and alkaline environment industries like breweries, distilleries and sewage treatment plants. As AASC is recommended for ambient air and in other exposures, its implementation as a construction material will reduce the carbon footprint.

Originality/value

The developed AASC mix proportion 1:2:4 is an economical mix, because of low binder content, but it exhibits a higher early age compressive strength value of 45.6 MPa at the age of 3 days. The compressive strength increases linearly with age from 3 to 365 days when exposed to seawater and ambient air. The performance of AASC is very good in the ambient, alkaline environment and seawater compared to other exposure conditions.

Details

Journal of Engineering, Design and Technology , vol. 22 no. 1
Type: Research Article
ISSN: 1726-0531

Keywords

Article
Publication date: 16 April 2024

Ziyan Lu, Feng Qiu, Hui Song and Xianguo Hu

This paper aims to solve the problems molybdenum disulfide (MoS2) nanosheets suffer from inadequate dispersion stability and form a weak lubricating film on the friction surface…

Abstract

Purpose

This paper aims to solve the problems molybdenum disulfide (MoS2) nanosheets suffer from inadequate dispersion stability and form a weak lubricating film on the friction surface, which severely limits their application as lubricant additives.

Design/methodology/approach

MoS2/C60 nanocomposites were prepared by synthesizing molybdenum disulfide (MoS2) nanosheets on the surface of hydrochloric acid-activated fullerenes (C60) by in situ hydrothermal method. The composition, structure and morphology of MoS2/C60 nanocomposites were characterized. Through the high-frequency reciprocating tribology test, its potential as a lubricant additive was evaluated.

Findings

MoS2/C60 nanocomposites that were prepared showed good dispersion in dioctyl sebacate (DOS). When 0.5 Wt.% MoS2/C60 was added, the friction reduction performance and wear resistance improved by 54.5% and 62.7%, respectively.

Originality/value

MoS2/C60 composite nanoparticles were prepared by in-situ formation of MoS2 nanosheets on the surface of C60 activated by HCl through hydrothermal method and were used as potential lubricating oil additives.

Peer review

The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-10-2023-0321/

Details

Industrial Lubrication and Tribology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 24 April 2024

Ali Hassanzadeh, Ebrahim Ghorbani-Kalhor, Khalil Farhadi and Jafar Abolhasani

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Abstract

Purpose

This study’s aim is to introduce a high-performance sorbent for the removal of both anionic (Congo red; CR) and cationic (methylene blue; MB) dyes from aqueous solutions.

Design/methodology/approach

Sodium silicate is adopted as a substrate for GO and AgNPs with positive charge are used as modifiers. The synthesized nanocomposite is characterized by FTIR, FESEM, EDS, BET and XRD techniques. Then, some of the most effective parameters on the removal of CR and MB dyes such as solution pH, sorbent dose, adsorption equilibrium time, primary dye concentration and salt effect are optimized using the spectrophotometry technique.

Findings

The authors successfully achieved notable maximum adsorption capacities (Qmax) of CR and MB, which were 41.15 and 37.04 mg g−1, respectively. The required equilibrium times for maximum efficiency of the developed sorbent were 10 and 15 min for CR and MB dyes, respectively. Adsorption equilibrium data present a good correlation with Langmuir isotherm, with a correlation coefficient of R2 = 0.9924 for CR and R2 = 0.9904 for MB, and kinetic studies prove that the dye adsorption process follows pseudo second-order models (CR R2 = 0.9986 and MB R2 = 0.9967).

Practical implications

The results showed that the proposed mechanism for the function of the developed sorbent in dye adsorption was based on physical and multilayer adsorption for both dyes onto the active sites of non-homogeneous sorbent.

Originality/value

The as-prepared nano-adsorbent has a high ability to remove both cationic and anionic dyes; moreover, to the high efficiency of the adsorbent, it has been tried to make its synthesis steps as simple as possible using inexpensive and available materials.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 20 March 2024

Malav R. Sanghvi, Karan W. Chugh and S.T. Mhaske

This study aims to synthesize Prussian blue {FeIII4[FeII(CN)6]3} pigment by reacting ferric chloride with different ferrocyanides through the same procedure. The influence of the…

Abstract

Purpose

This study aims to synthesize Prussian blue {FeIII4[FeII(CN)6]3} pigment by reacting ferric chloride with different ferrocyanides through the same procedure. The influence of the ferrocyanide used on resulting pigment properties is studied.

Design/methodology/approach

Prussian blue is commonly synthesized by direct or indirect methods, through iron salt and ferrocyanide/ferricyanide reactions. In this study, the direct, single-step process was pursued by dropwise addition of the ferrocyanide into ferric chloride (both as aqueous solutions). Two batches – (K-PB) and (Na-PB) – were prepared by using potassium ferrocyanide and sodium ferrocyanide, respectively. The development of pigment was confirmed by an identification test and characterized by spectroscopic techniques. Pigment properties were determined, and light fastness was observed for acrylic emulsion films incorporating dispersed pigment.

Findings

The two pigments differed mainly in elemental detection owing to the dissimilar ferrocyanide being used; IR spectroscopy where only (Na-PB) showed peaks indicating water molecules; and bleeding tendency where (K-PB) was water soluble whereas (Na-PB) was not. The pigment exhibited remarkable blue colour and good bleeding resistance in several solvents and showed no fading in 24 h of light exposure though oil absorption values were high.

Originality/value

This article is a comparative study of Prussian blue pigment properties obtained using different ferrocyanides. The dissimilarity in the extent of water solubility will influence potential applications as a colourant in paints and inks. K-PB would be advantageous in aqueous formulations to confer a blue colour without any dispersing aid but unfavourable in systems where other coats are water-based due to their bleeding tendency.

Details

Pigment & Resin Technology, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 3 November 2022

Xiaoping Lin, Xiaoyan Li, Jiming Yao, Xianghong Li and Jianlin Xu

To develop electrode materials for supercapacitor with superior electrochemical performance and simple preparation process, the purpose of this study is to prepare flexible…

Abstract

Purpose

To develop electrode materials for supercapacitor with superior electrochemical performance and simple preparation process, the purpose of this study is to prepare flexible CC/NiS/a-NiS electrodes with self-supporting structure by loading hydrothermally synthesized a-NiS particles along with nano-NiS on carbon cloth by electroplating method.

Design/methodology/approach

The effects of current densities, temperatures and pH values on the loading amount and uniformity of the active substances during the plating process were investigated on the basis of optimization of surface morphology, crystalline structure and electrochemical evaluation as the cyclic voltammetry curves, constant current charge–discharge curves and AC impedance.

Findings

The a-NiS particles on CC/NiS/a-NiS were mostly covered by the plated nano-NiS, which behaved as a bulge and provided a larger specific surface area. The CC/NiS/a-NiS electrode prepared with the optimized parameter exhibited a specific capacitance of 115.13 F/g at a current density of 1 A/g and a Coulomb efficiency of 84% at 5 A/g, which is superior to that of CC/NiS electrode prepared by electroplating at a current density of 10 mA/cm2, a temperature of 55°C and a pH of 4, demonstrating its fast charge response of the electrode and potential application in wearable electronics.

Originality/value

This study provides an integrated solution for the development of specifically structured NiS-based electrode for supercapacitor with simple process, low cost and high electrochemical charge/discharge performance, and the simple and easy-to-use method is also applicable to other electrochemically active composites.

Details

Pigment & Resin Technology, vol. 53 no. 3
Type: Research Article
ISSN: 0369-9420

Keywords

Article
Publication date: 8 March 2022

Md Mehedi Hasan Rubel, Syed Rashedul Islam, Abeer Alassod, Amjad Farooq, Xiaolin Shen, Taosif Ahmed, Mohammad Mamunur Rashid and Afshan Zareen

The main purpose of this study was to prepare the cotton fibers and cellulose powder by a layer of nano-crystalline-titanium dioxide (TiO2) using the sol-gel sono-synthesis method…

Abstract

Purpose

The main purpose of this study was to prepare the cotton fibers and cellulose powder by a layer of nano-crystalline-titanium dioxide (TiO2) using the sol-gel sono-synthesis method to clean the wastewater containing reactive dye. Moreover, TiO2 nano-materials are remarkable due to their photoactive properties and valuable applications in wastewater treatment.

Design/methodology/approach

In this research, TiO2 was synthesized and deposited effectively on cotton fibers and cellulose powder using ultrasound-assisted coating. Further, tetra butyl titanate was used as a precursor to the synthesis of TiO2 nanoparticles. Reactive dye (red 195) was used in this study. X-ray Diffraction, scanning electron microscopy and Fourier transform infrared spectroscopy were performed to prove the aptitude for the formation of crystal TiO2 on the cotton fibers and cellulose powder along with TiO2 nanoparticles as well as to analyze the chemical structure. Decoloration of the wastewater was investigated through ultraviolet (UV-Visible) light at 30 min.

Findings

The experimental results revealed that the decolorization was completed at 2.0 min with the cellulose nano TiO2 treatment whereas cotton nano TiO2 treated solution contained reactive dyestuffs even after the treatment of 2 min. This was the fastest method up to now than all reported methods for sustainable decolorization of wastewater by absorption. Furthermore, this study explored that the cellulose TiO2 nano-composite was more effective than the cotton TiO2 nano-composite of decoloration wastewater for the eco-friendly remedy.

Research limitations/implications

Cotton fibers and cellulose powder with nano-TiO2, and only reactive dye (red 195) were tested.

Practical implications

With reactive dye-containing wastewater, it seems to be easier to get rid of the dye than to retain it, especially from dyeing of yarn, fabric, apparel, and as well as other sectors where dyestuffs are used.

Social implications

This research would help to reduce pollution in the environment as well as save energy and cost.

Originality/value

Decoloration of wastewater treatment is an essential new track with nano-crystalline TiO2 to fast and efficient cleaning of reactive dyes containing wastewater used as a raw material.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

1 – 10 of 37