Search results

1 – 10 of 633
Article
Publication date: 11 October 2018

Guirong Yang, Wenming Song, Fuqiang Wang, Ying Ma and Yuan Hao

This paper aims to investigate the corrosion rate, surface morphology and composition of corrosion products of 20# seamless steel in aqueous CO2 solution under stratified…

Abstract

Purpose

This paper aims to investigate the corrosion rate, surface morphology and composition of corrosion products of 20# seamless steel in aqueous CO2 solution under stratified gas-liquid two-phase flow condition. The development of a corrosion products layer has also been discussed.

Design/methodology/approach

The following methods were used: weight loss method, scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction.

Findings

The corrosion rate curve presents an irregular zigzag change trend with a gradual increase in time. The peak value of the corrosion rate appears when the corrosion time is 4 h and 8 h. The corrosion products layer is composed of two sub-layers: the inner dense layer that is about 6 µm thick and the outer loose layer that is about 9 µm thick when the corrosion time is 8 h. The main corrosion product are FeCO3 and Fe2O3.

Originality/value

The atomic ratio of Fe/C/O is relatively stable for the inner dense layer, but changes in thickness for the outer loose layer. There is a densification stage after a loose corrosion products layer forms, and it is periodic.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 March 2021

Guirong Yang, Zhaoxia Pan, Zhenghai Zhang, Wenming Song, Ying Ma and Yuan Hao

This study aims to investigate the initial corrosion behavior in aqueous solution of 20# seamless steel under (CO2/aqueous solution) gas–liquid two-phase stratified flow…

Abstract

Purpose

This study aims to investigate the initial corrosion behavior in aqueous solution of 20# seamless steel under (CO2/aqueous solution) gas–liquid two-phase stratified flow conditions.

Design/methodology/approach

The initial corrosion behavior was studied through the weight loss methods, scanning electron microscopy with energy-dispersive x-ray spectroscopy and x-ray diffraction.

Findings

The corrosion rate of 20# steel obviously increases with the increasing gas pressure at different corrosion time when the CO2 pressure is less than 0.11 MPa, and the increase of corrosion rate tends to be steady when the pressure exceeds 0.11 MPa. With the increase of CO2 pressure, the corrosion products changed from flocculent to acicular, granular and scaly. A four-stage model for the growth of the corrosion product layer was proposed, namely, the diffusion reaction stage, the local film formation stage, the complete film formation stage and the densification stage of the product film.

Originality/value

A four-stage model for the growth of the corrosion product layer on the pipe wall surface under this condition was proposed, namely, the diffusion reaction stage, the local film formation stage, the complete film formation stage and the densification stage of the product film. The growing process and densification mechanism of corrosion products layer were discussed.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 17 April 2020

Guirong Yang, Wenming Song, Zibo Zhu, Ying Ma and Yuan Hao

The paper aims to study the effect of liquid flow velocity on corrosion behavior of 20# steel at initial stage under (CO2/aqueous solution) gas–liquid two-phase plug flow…

Abstract

Purpose

The paper aims to study the effect of liquid flow velocity on corrosion behavior of 20# steel at initial stage under (CO2/aqueous solution) gas–liquid two-phase plug flow conditions.

Design/methodology/approach

Weight loss, scanning electron microscopy, energy-dispersive X-ray spectroscopy and XPS methods were used in this study.

Findings

The corrosion rate increased with the increasing liquid flow velocity at any different corrosion time. The corrosion rate decreased with the extension of corrosion time at the same liquid flow velocity. There was no continuous corrosion products film on the whole pipe wall at any different corrosion time. The macroscopic brown-yellow corrosion products on the pipe wall surface decreased with the increasing liquid flow velocity and the loose floccus corrosion products decreased gradually until these products were transformed into un-continuous needle-like dense products with the increasing liquid velocity. The main elements among the products film were Fe, C and O, and the main phases of products film on the pipe wall were Fe3C, FeCO3, FeOOH and Fe3O4. When the corrosion time was 1 h under different liquid–velocity condition, the thickness of local corrosion products film was from 3.5 to 3.8 µm.

Originality/value

The ion mass transfer model of corrosion process in pipe was put forward under gas–liquid two-phase plug flow condition. The total thickness of diffusion sublayer and turbulence sublayer decreased as well as the turbulence propagation coefficient increased with the increasing liquid velocity, which led to the increasing velocity of ion transfer during corrosion process. This was the fundamental reason for the increase of corrosion rate with the increasing liquid velocity.

Details

Anti-Corrosion Methods and Materials, vol. 67 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 14 February 2019

Weishan Huang, Jing-Li Luo, Hani Henein and Josiah Jordan

This paper aims to evaluate the sulfide stress cracking (SSC) resistance of L80 casing steels with different alloying chemistries (e.g. Ti-B and Mn-Cr-Mo) by correlating the…

Abstract

Purpose

This paper aims to evaluate the sulfide stress cracking (SSC) resistance of L80 casing steels with different alloying chemistries (e.g. Ti-B and Mn-Cr-Mo) by correlating the reduction in area ratio with the mechanical property, inclusion and carbide.

Design/methodology/approach

SSC tests were conducted in 5.0 Wt.% sodium chloride and 0.5 Wt.% acetic acid solution saturated with H2S using constant load tensile method. The microstructure and fracture morphology of the steel were observed using scanning electron microscope. The inclusion and carbide were identified by energy dispersive spectroscopy and auger electron microscope.

Findings

Among all the testing steels, electric resistance welding (ERW) L80-0.5Mo steel demonstrates the highest SSC resistance because of its appropriate mechanical properties, uniform microstructure and low inclusion content. The SSC resistance of L80 steels generally decreases with the rising yield strength. The fracture mode of steel with low SSC resistance is jointly dominated by transgranular and intergranular cracking, whereas that with high SSC resistance is mainly transgranular cracking. SSC is more sensitive to inclusions than carbides because the cracks are easier to be initiated from the elongated inclusions and oversized oxide inclusions, especially the inclusion clusters. Unlike the elongated carbide, globular carbide in the steel can reduce the negative effect on the SSC resistance. Especially, a uniform microstructure with fine globular carbides favors a significant improvement in SSC resistance through precluding the cracking propagation.

Originality/value

The paper provides the new insights into the improvement in SSC resistance of L80 casing steel for its application in H2S environment through optimizing its alloying compositions and microstructure.

Details

Anti-Corrosion Methods and Materials, vol. 66 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 August 1975

E.C. Hale

Absolute cleanliness is synonymous with food and drink production. Plant components in contact with process liquors must conform to the highest possible standards of hygiene. All…

Abstract

Absolute cleanliness is synonymous with food and drink production. Plant components in contact with process liquors must conform to the highest possible standards of hygiene. All processing plants, whether they be simple one‐stage units or vast multi‐stage complexes, rely on pipework to convey the ingredients along their pre‐determined paths through the different stages of manufacture.

Details

Anti-Corrosion Methods and Materials, vol. 22 no. 8
Type: Research Article
ISSN: 0003-5599

Article
Publication date: 1 August 1998

Jaroslav Mackerle

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder…

4529

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming, powder metallurgy and composite material processing are briefly discussed. The range of applications of finite elements on these subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE researchers/users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for 1994‐1996, where 1,370 references are listed. This bibliography is an updating of the paper written by Brannberg and Mackerle which has been published in Engineering Computations, Vol. 11 No. 5, 1994, pp. 413‐55.

Details

Engineering Computations, vol. 15 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 11 April 2024

Namrata Gangil, Arshad Noor Siddiquee, Jitendra Yadav, Shashwat Yadav, Vedant Khare, Neelmani Mittal, Sambhav Sharma, Rittik Srivastava and Sohail Mazher Ali Khan M.A.K. Mohammed

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and…

Abstract

Purpose

The purpose of this paper is to compile a comprehensive status report on pipes/piping networks across different industrial sectors, along with specifications of materials and sizes, and showcase welding avenues. It further extends to highlight the promising friction stir welding as a single solid-state pipe welding procedure. This paper will enable all piping, welding and friction stir welding stakeholders to identify scope for their engagement in a single window.

Design/methodology/approach

The paper is a review paper, and it is mainly structured around sections on materials, sizes and standards for pipes in different sectors and the current welding practice for joining pipe and pipe connections; on the process and principle of friction stir welding (FSW) for pipes; identification of main welding process parameters for the FSW of pipes; effects of process parameters; and a well-carved-out concluding summary.

Findings

A well-carved-out concluding summary of extracts from thoroughly studied research is presented in a structured way in which the avenues for the engagement of FSW are identified.

Research limitations/implications

The implications of the research are far-reaching. The FSW is currently expanding very fast in the welding of flat surfaces and has evolved into a vast number of variants because of its advantages and versatility. The application of FSW is coming up late but catching up fast, and as a late starter, the outcomes of such a review paper may support stake holders to expand the application of this process from pipe welding to pipe manufacturing, cladding and other high-end applications. Because the process is inherently inclined towards automation, its throughput rate is high and it does not need any consumables, the ultimate benefit can be passed on to the industry in terms of financial gains.

Originality/value

To the best of the authors’ knowledge, this is the only review exclusively for the friction stir welding of pipes with a well-organized piping specification detailed about industrial sectors. The current pipe welding practice in each sector has been presented, and the avenues for engaging FSW have been highlighted. The FSW pipe process parameters are characteristically distinguished from the conventional FSW, and the effects of the process parameters have been presented. The summary is concise yet comprehensive and organized in a structured manner.

Details

World Journal of Engineering, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 May 1994

N. Brännberg and J. Mackerle

This paper gives a review of the finite element techniques (FE)applied in the area of material processing. The latest trends in metalforming, non‐metal forming and powder…

1443

Abstract

This paper gives a review of the finite element techniques (FE) applied in the area of material processing. The latest trends in metal forming, non‐metal forming and powder metallurgy are briefly discussed. The range of applications of finite elements on the subjects is extremely wide and cannot be presented in a single paper; therefore the aim of the paper is to give FE users only an encyclopaedic view of the different possibilities that exist today in the various fields mentioned above. An appendix included at the end of the paper presents a bibliography on finite element applications in material processing for the last five years, and more than 1100 references are listed.

Details

Engineering Computations, vol. 11 no. 5
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 September 2016

Negar Elhami Khorasani, Maria Garlock and Paolo Gardoni

This paper aims to develop a framework to assess the reliability of structures subject to a fire following an earthquake (FFE) event. The proposed framework is implemented in one…

Abstract

Purpose

This paper aims to develop a framework to assess the reliability of structures subject to a fire following an earthquake (FFE) event. The proposed framework is implemented in one seamless programming environment and is used to analyze an example nine-story steel moment-resisting frame (MRF) under an FFE. The framework includes uncertainties in load and material properties at elevated temperatures and evaluates the MRF performance based on various limit states.

Design/methodology/approach

Specifically, this work models the uncertainties in fire load density, yield strength and modulus of elasticity of steel. The location of fire compartment is also varied to investigate the effect of story level (lower vs higher) and bay location (interior vs exterior) of the fire on the post-earthquake performance of the frame. The frame is modeled in OpenSees to perform non-linear dynamic, thermal and reliability analyses of the structure.

Findings

Results show that interior bays are more susceptible than exterior bays to connection failure because of the development of larger tension forces during the cooling phase of the fire. Also, upper floors in general are more probable to reach specified damage states than lower floors because of the smaller beam sizes. Overall, results suggest that modern MRFs with a design that is governed by inter-story drifts have enough residual strength after an earthquake so that a subsequent fire typically does not lead to results significantly different compared to those of an event where the fire occurs without previous seismic damage. However, the seismic damage could lead to larger fire spread, increased danger to the building as a whole and larger associated economic losses.

Originality/value

Although the paper focuses on FFE, the proposed framework is general and can be extended to other multi-hazard scenarios.

Details

Journal of Structural Fire Engineering, vol. 7 no. 3
Type: Research Article
ISSN: 2040-2317

Keywords

Article
Publication date: 1 November 1943

Harry Wilkin Perry

HOLLOW steel airscrew‐blades which, it is claimed, are stronger, weigh no more, and are less susceptible to impact and abrasion than forged aluminium blades of the same size are…

Abstract

HOLLOW steel airscrew‐blades which, it is claimed, are stronger, weigh no more, and are less susceptible to impact and abrasion than forged aluminium blades of the same size are being manufactured in quantity from seamless steel tubing by the American Propeller Corporation, a subsidiary of the Aviation Corporation. The conception of using tubing for blade making is logical, but the difficulties of putting it into practice were great and required the development of many new methods and production tools. For the following description and accompanying illustrations, the author is indebted to the Propeller Corporation and to supplemental information contained in an article in Steel written by A. H. Allen, Detroit editor of that journal.

Details

Aircraft Engineering and Aerospace Technology, vol. 15 no. 11
Type: Research Article
ISSN: 0002-2667

1 – 10 of 633