Search results

1 – 10 of 171
Article
Publication date: 6 November 2017

Jingsong Li, Lixiang Wang, Qingxin Yang, Shanming Wang, Yongjian Li, Changgeng Zhang and Baojun Qu

Due to existence of skin effect under rotational excitation, especially to high-frequency motors and power transformers run at the frequency of hundreds or even thousands of…

Abstract

Purpose

Due to existence of skin effect under rotational excitation, especially to high-frequency motors and power transformers run at the frequency of hundreds or even thousands of hertz, core losses will increase significantly, which may cause local overheating damage, and the efficiency and longevity will be decreased. The purpose of this paper is to accurately calculate the rotational anomalous loss in electrical steel sheets.

Design/methodology/approach

The influence of skin effect to rotational anomalous loss coefficient is described in detail. Based on the rotational core losses calculation approach, the transformed coefficient and parameters of rotational anomalous loss are determined in accordance with experimental data obtained by using 3D magnetic properties testing system. Then, a variable loss coefficient calculation model of rotational anomalous loss is built. Meanwhile, a separation of the total 2D elliptical rotation experimental core losses is worked out.

Findings

The two methods are analysed and compared qualitatively. It should be noted that the novel calculation model can be more effectively presented anomalous loss features. Moreover, quantitative comparisons between 2D elliptical rotation and alternating core losses have achieved beneficial conclusions.

Originality/value

Transformed rotational anomalous loss coefficient and parameters of electrical steel sheets considering skin effect are determined. Based on that, a novel calculation model evaluating 2D elliptical rotation anomalous loss is presented and verified based on the experimental measurement and the separation of the total 2D elliptical rotation core losses. The 2D elliptical rotation core losses separation method and quantitative comparison with alternating excitation are helpful to engineering application.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 19 September 2019

Jing Xie, Shaoxian Bai and Chunhong Ma

The purpose of this paper is to improve opening performance of bi-directional rotation gas face seals by investigating the hydrodynamic effect of non-closed elliptical grooves.

Abstract

Purpose

The purpose of this paper is to improve opening performance of bi-directional rotation gas face seals by investigating the hydrodynamic effect of non-closed elliptical grooves.

Design/methodology/approach

A model of non-closed elliptical groove bi-directional rotation gas face seal is developed. The distribution of lubricating film pressure is obtained by solving gas Reynolds equations with the finite difference method. The program iterates repeatedly until the convergence criterion on the opening force is satisfied, and the sealing performance is finally obtained.

Findings

Non-closed elliptical groove presents much stronger hydrodynamic effect than the closed groove because of drop of the gas resistance flowing into grooves. Besides, the non-closed elliptical groove presents significant hydrodynamic effect under bi-directional rotation conditions, and an increase of over 40 per cent is obtained for the opening force at seal pressure 4.5 MPa, as same level as the unidirectional spiral groove gas seal. In the case of bi-directional rotation, the value of the inclination angle is recommended to set as 90° presenting a structure symmetry so as to keep best opening performance for both positive and reverse rotation.

Originality/value

A model of non-closed elliptical groove bi-directional rotation gas face seal is established. The hydrodynamic mechanism of this gas seal is illustrated. Parametric investigation of inclination angle and integrity rate is presented for the non-closed elliptical groove bi-directional rotation gas face seal.

Details

Industrial Lubrication and Tribology, vol. 72 no. 3
Type: Research Article
ISSN: 0036-8792

Keywords

Article
Publication date: 2 October 2017

Yi-Cheng Chen, Yun-Hao Cheng, Jui-Tang Tseng and Kun-Ju Hsieh

This paper aims to present simulation results of a harmonic drive (HD) with involute flexspline (FS) profiles based on two-dimensional (2-D) finite element analysis (FEA).

Abstract

Purpose

This paper aims to present simulation results of a harmonic drive (HD) with involute flexspline (FS) profiles based on two-dimensional (2-D) finite element analysis (FEA).

Design/methodology/approach

First, the mathematical model of the FS with involute tooth profile was developed using a straight-edge rack cutter based on the theory of gearing. Then the engaging circular spline (CS) with conjugate tooth profile of FS was derived based on the enveloping theory and theory of gearing. Additionally, a mesh generation program was developed to discretize the FS based on the mathematical model. An elliptical wave generator (WG) was inserted into the FS, and a torque was applied to drive the FS meshing with the CS. The WG and the CS were both assumed to be rigid in the finite element model.

Findings

Finally, a 2-D FEA was conducted to explore the stress distribution on the FS, the engagement movement of the FS, the torsional stiffness and the engaged area of teeth of the HD under various conditions. Moreover, this research also studied the effect of changing pressure angle of the involute FS on the performance of the HD.

Research limitations/implications

The simulation model and methodology presented in this paper paved the way for further investigation and optimization of the HD with involute tooth profile FS and conjugate CS.

Originality/value

The simulation model of HD is established on conjugate shape based on the theory of gearing and an automatic mesh generation program is developed to generate the finite element model. The characteristics of the HD can thus be simulated according to the developed model.

Details

Engineering Computations, vol. 34 no. 7
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 12 September 2023

Yang Zhou, Long Wang, Yongbin Lai and Xiaolong Wang

The coupling process between the loading mechanism and the tank car mouth is a crucial step in the tank car loading process. The purpose of this paper is to design a method to…

Abstract

Purpose

The coupling process between the loading mechanism and the tank car mouth is a crucial step in the tank car loading process. The purpose of this paper is to design a method to accurately measure the pose of the tanker car.

Design/methodology/approach

The collected image is first subjected to a gray enhancement operation, and the black parts of the image are extracted using Otsu’s threshold segmentation and morphological processing. The edge pixels are then filtered to remove outliers and noise, and the remaining effective points are used to fit the contour information of the tank car mouth. Using the successfully extracted contour information, the pose information of the tank car mouth in the camera coordinate system is obtained by establishing a binocular projection elliptical cone model, and the pixel position of the real circle center is obtained through the projection section. Finally, the binocular triangulation method is used to determine the position information of the tank car mouth in space.

Findings

Experimental results have shown that this method for measuring the position and orientation of the tank car mouth is highly accurate and can meet the requirements for industrial loading accuracy.

Originality/value

A method for extracting the contours of various types of complex tanker mouth is proposed. This method can accurately extract the contour of the tanker mouth when the contour is occluded or disturbed. Based on the binocular elliptic conical model and perspective projection theory, an innovative method for measuring the pose of the tanker mouth is proposed, and according to the space characteristics of the tanker mouth itself, the ambiguity of understanding is removed. This provides a new idea for the automatic loading of ash tank cars.

Details

Robotic Intelligence and Automation, vol. 43 no. 6
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 25 June 2019

Seyed Mohammad Mousavi, Omid Ali Akbari, Ghanbarali Sheikhzadeh, Ali Marzban, Davood Toghraie and Ali J. Chamkha

The purpose of this study is two phase modeling of Water/Cu nanofluid forced convection in different arrangements of elliptical tube banks in a two-dimensional space.

Abstract

Purpose

The purpose of this study is two phase modeling of Water/Cu nanofluid forced convection in different arrangements of elliptical tube banks in a two-dimensional space.

Design/methodology/approach

The arrangements of tube banks have been regarded as equal spacing triangle (ES), equilateral triangle (ET) and the rotated square (RS). The obtained results indicate that, among the investigated arrangements, the RS arrangement has the maximum value of heat transfer with cooling fluid. Also, the changes of Nusselt number and the local friction factor are under the influence of three main factors including volume fraction of slid nanoparticles, the changes of fluid velocity parameters on the curved surface of tube and flow separation after crossing from a specified angle of fluid rotation.

Findings

In Reynolds number of 250 and in all arrangements of the tube banks, the behavior of Nusselt number is almost the same and the separation of flow happens in almost 155-165 degrees from fluid rotation on surface. In RS arrangement, due to the strength of vortexes after fluid separation, better mixture is created and because of this reason, after the separation zone, the level of local Nusselt number graph enhances significantly.

Originality/value

In this research, the laminar and two-phase flow of Water/Cu nanofluid in tube banks with elliptical cross section has been numerically investigated in a two-dimensional space with different longitudinal arrangements. In this study, the effects of using nanofluid, different arrangements of tube banks and the elliptical cross section on heat transfer and cooling fluid flow among the tube banks of heat exchanger have been numerically simulated by using finite volume method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2022

Fatimah De'nan, Nor Salwani Hashim and Xing Yong Sua

With the vast advancement of structural steel properties over the recent decades, structural steel has become the dominate material for the construction of bridges, stadiums…

Abstract

Purpose

With the vast advancement of structural steel properties over the recent decades, structural steel has become the dominate material for the construction of bridges, stadiums, factories and high rise buildings. This paper aims to present the study of structural behaviour and efficiency of tapered steel section with elliptical perforation under shear loading conditions.

Design/methodology/approach

The effect of various elliptical perforation configurations such as tapering ratio, perforation size, perforation orientation and perforation layout on the shear behaviour of tapered steel section has been investigated by using finite element method. A total of 112 models are simulated via LUSAS software.

Findings

It has been found that the most efficient model is the tapered steel section with tapering ratio of 0.3 and vertical elliptical perforation of 0.2 times the section depths which are arranged in Layout 3. The most efficient model has a shear efficiency of 1,094.35 kN, which is 4.12% less than the tapered steel section without perforation, but it could achieve a 0.32% of weight reduction.

Originality/value

The smaller tapering ratio and perforation size contributed to the higher shear buckling capacity and efficiency for the elliptical perforated tapered steel section.

Details

World Journal of Engineering, vol. 20 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 17 April 2007

Yi Lin

This paper aims to show that systemic methods and thinking can be used to develop useful tools to address problems open in traditional science, such as Newtonian physics…

Abstract

Purpose

This paper aims to show that systemic methods and thinking can be used to develop useful tools to address problems open in traditional science, such as Newtonian physics, universal gravitation, planetary motions, and the three‐body problem.

Design/methodology/approach

Expanded on the yoyo model introduced earlier for general systems, a new figurative analysis method is introduced in this paper.

Findings

After establishing its theoretical and empirical foundations, this method is used to generalize Newton's laws of mechanics by addressing several unsettled problems in the history. Through the concept of equal quantitative effects, it is argued that this new method possesses some strength not found in pure quantitative methods. After studying the characteristics of whole evolutions of converging and diverging fluid motions, the concept of time is revisited using the new model. As further applications of the new method, one covers Kepler's laws of planetary motion, Newton's law of universal gravitation, and explains why planets travel along elliptical orbits, why no external forces are needed for systems to revolve about one another, and why binary star systems, tri‐nary star systems, and even n‐nary star systems can exist, for any natural number n≥2. By checking the study of the three‐body problem, a brand new method is provided to analyze the movement of three stars, visible or invisible. At the end, some open problems are cast for future research.

Originality/value

This paper shows for the first time in history that several well‐established laws in physics can be generalized using systemic thinking. Beyond that, an operative method of analysis is introduced to investigate problems that have been extremely difficult to handle in the scientific history. With adequate quantitative tools developed to accompany this method, it can be reasonably expected that an active systemic scientific era with a slightly different tilt from the contemporary science will follow shortly.

Details

Kybernetes, vol. 36 no. 3/4
Type: Research Article
ISSN: 0368-492X

Keywords

Article
Publication date: 1 June 1997

Jaroslav Mackerle

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the…

6042

Abstract

Gives a bibliographical review of the finite element methods (FEMs) applied for the linear and nonlinear, static and dynamic analyses of basic structural elements from the theoretical as well as practical points of view. The range of applications of FEMs in this area is wide and cannot be presented in a single paper; therefore aims to give the reader an encyclopaedic view on the subject. The bibliography at the end of the paper contains 2,025 references to papers, conference proceedings and theses/dissertations dealing with the analysis of beams, columns, rods, bars, cables, discs, blades, shafts, membranes, plates and shells that were published in 1992‐1995.

Details

Engineering Computations, vol. 14 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 17 August 2012

Ibrar Jan, Umer Khan and Naeem Iqbal

Vision‐based inverted robot control exhibits a complex and a multi‐parameter estimation task. Compromises over speed and accuracy must be made to reduce the cost of the system, if…

Abstract

Purpose

Vision‐based inverted robot control exhibits a complex and a multi‐parameter estimation task. Compromises over speed and accuracy must be made to reduce the cost of the system, if high profile techniques are not utilized. The purpose of this paper is to present such a technique where many parameter estimation problems admit partitioning process. The process eliminates the complexity by dividing such a high dimension task into several reduced dimension problems. The partition procedure is defined by human understanding of the task. Here a mechanical setup is designed that handles the pose parameters estimations as a set of sub‐problems. The estimated pose parameters are applied to an inverted robot approaching a target on the floor.

Design/methodology/approach

A novel technique that helps the inverted robot to approach its target is detailed here. The new methodology is based upon the modified versions of existing and proven techniques of pure translations and rotations estimations. Providing valid conditions, the parameters of the two vectors of the camera's pose are isolated. In the first pass, the roll angle is adjusted. A subsequent pass uses modified 2‐point algorithm to estimate partial translational vector. Introducing 4‐point algorithm; an extension of pure rotational vector estimation technique, to estimate partial rotational vector. Lastly, visual depth is estimated to complete the task. For simplicity, the robot dynamics are not detailed here. It is assumed that the robot can possibly achieve any position if the desired pose parameters are known.

Findings

It is found that the isolated vectors estimation process reduces the complexity of the system and so reduces the computational cost and processing time. The proposed technique is applied to a prototype inverted Cartesian robot having 3D rotary wrist. Through analysis, it is observed that the estimated parameters are very close to the actual pose parameters.

Practical implications

The proposed technique can aid CNC vertical milling machines to countercheck the exact position and orientation of the tool w.r.t. the job. Similar systems in practice are DECKEL MAHO, DMU 60/80/100, 5‐axis package and DMC 35 V series.

Originality/value

The dynamic nature of the method proposed in the paper makes it more efficacious for mechanical/robotic systems with vertically downward tool under gravity effect.

Details

Industrial Robot: An International Journal, vol. 39 no. 5
Type: Research Article
ISSN: 0143-991X

Keywords

Article
Publication date: 1 June 2000

K. Wiak

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines;…

Abstract

Discusses the 27 papers in ISEF 1999 Proceedings on the subject of electromagnetisms. States the groups of papers cover such subjects within the discipline as: induction machines; reluctance motors; PM motors; transformers and reactors; and special problems and applications. Debates all of these in great detail and itemizes each with greater in‐depth discussion of the various technical applications and areas. Concludes that the recommendations made should be adhered to.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 19 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 10 of 171