Search results

1 – 10 of over 2000
Article
Publication date: 13 February 2023

Oguz Kose and Tugrul Oktay

The purpose of this paper is to optimize the simultaneous flight performance of a hexarotor unmanned aerial vehicle (UAV) by using simultaneous perturbation stochastic…

Abstract

Purpose

The purpose of this paper is to optimize the simultaneous flight performance of a hexarotor unmanned aerial vehicle (UAV) by using simultaneous perturbation stochastic approximation (i.e. SPSA), deep neural network and proportional integral derivative (i.e. PID) according to varying arm length (i.e. morphing).

Design/methodology/approach

In this paper, proper PID gain coefficients and morphing ratio were obtained using the stochastic optimization method, also known as SPSA to maximize flight efficiency. Because it is difficult to establish an analytical connection between the morphing ratio and hexarotor moments of inertia, the deep neural network was used to obtain the moments of inertia according to the morphing ratio. By using SPSA and deep neural network, the best performance indexes were obtained and both longitudinal and lateral flight simulations were performed with the obtained data.

Findings

With SPSA, the best PID coefficients and morphing ratio are obtained for both longitudinal and lateral flight. Because the hexarotor solid body model changes according to the morphing ratio, the moment of inertia values used in the simulations also change. According to the morphing ratio, the moment of inertia values was obtained with the deep neural network over a created data set.

Research limitations/implications

It takes a long time to obtain the morphing ratio suitable for the hexarotor model and the PID gain coefficients suitable for this morphing ratio. However, this situation can be overcome with the proposed SPSA. In addition, it takes a long time to obtain the appropriate moments of inertia according to the morphing ratio. However, in this case, it was overcome using the deep neural network.

Practical implications

Determining the morphing ratio and PID gain coefficients using the optimization method, as well as determining the moments of inertia using the deep neural network, is very useful as it can increase the efficiency of hexarotor flight and flight efficiently with different arm lengths. With the proposed method, the hexarotor design performance criteria (i.e. rise time, settling time and overshoot) values were significantly improved compared to similar studies.

Social implications

Determining the hexarotor flight parameters using SPSA and deep neural network provides advantages in terms of time, cost and applicability.

Originality/value

The hexarotor flight efficiency is improved with the proposed SPSA and deep neural network approaches. In addition, the desired flight parameters can be obtained more quickly and reliably with the proposed approaches. The design performance criteria were also improved, enabling the hexarotor UAV to follow the given trajectory in the best way and providing convenience for end users. SPSA was preferred because it converged faster than other methods. While other methods perform 2n operations per iteration, SPSA only performs two operations. To obtain the moment of inertia, many physical parameter values of the UAV are required in the existing methods. In the proposed method, by creating a date set, only arm length and moment of inertia were estimated without the need to obtain physical parameters with the deep neural network structure.

Details

Aircraft Engineering and Aerospace Technology, vol. 95 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Content available
Article
Publication date: 12 April 2022

Monica Puri Sikka, Alok Sarkar and Samridhi Garg

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been…

1495

Abstract

Purpose

With the help of basic physics, the application of computer algorithms in the form of recent advances such as machine learning and neural networking in textile Industry has been discussed in this review. Scientists have linked the underlying structural or chemical science of textile materials and discovered several strategies for completing some of the most time-consuming tasks with ease and precision. Since the 1980s, computer algorithms and machine learning have been used to aid the majority of the textile testing process. With the rise in demand for automation, deep learning, and neural networks, these two now handle the majority of testing and quality control operations in the form of image processing.

Design/methodology/approach

The state-of-the-art of artificial intelligence (AI) applications in the textile sector is reviewed in this paper. Based on several research problems and AI-based methods, the current literature is evaluated. The research issues are categorized into three categories based on the operation processes of the textile industry, including yarn manufacturing, fabric manufacture and coloration.

Findings

AI-assisted automation has improved not only machine efficiency but also overall industry operations. AI's fundamental concepts have been examined for real-world challenges. Several scientists conducted the majority of the case studies, and they confirmed that image analysis, backpropagation and neural networking may be specifically used as testing techniques in textile material testing. AI can be used to automate processes in various circumstances.

Originality/value

This research conducts a thorough analysis of artificial neural network applications in the textile sector.

Details

Research Journal of Textile and Apparel, vol. 28 no. 1
Type: Research Article
ISSN: 1560-6074

Keywords

Article
Publication date: 17 May 2022

Qiucheng Liu

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of…

Abstract

Purpose

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.

Design/methodology/approach

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.

Findings

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.

Originality/value

In order to analyze the text complexity of Chinese and foreign academic English writings, the artificial neural network (ANN) under deep learning (DL) is applied to the study of text complexity. Firstly, the research status and existing problems of text complexity are introduced based on DL. Secondly, based on Back Propagation Neural Network (BPNN) algorithm, analyzation is made on the text complexity of Chinese and foreign academic English writings. And the research establishes a BPNN syntactic complexity evaluation system. Thirdly, MATLAB2013b is used for simulation analysis of the model. The proposed model algorithm BPANN is compared with other classical algorithms, and the weight value of each index and the model training effect are further analyzed by statistical methods. Finally, L2 Syntactic Complexity Analyzer (L2SCA) is used to calculate the syntactic complexity of the two libraries, and Mann–Whitney U test is used to compare the syntactic complexity of Chinese English learners and native English speakers. The experimental results show that compared with the shallow neural network, the deep neural network algorithm has more hidden layers and richer features, and better performance of feature extraction. BPNN algorithm shows excellent performance in the training process, and the actual output value is very close to the expected value. Meantime, the error of sample test is analyzed, and it is found that the evaluation error of BPNN algorithm is less than 1.8%, of high accuracy. However, there are significant differences in grammatical complexity among students with different English writing proficiency. Some measurement methods cannot effectively reflect the types and characteristics of written language, or may have a negative relationship with writing quality. In addition, the research also finds that the measurement of syntactic complexity is more sensitive to the language ability of writing. Therefore, BPNN algorithm can effectively analyze the text complexity of academic English writing. The results of the research provide reference for improving the evaluation system of text complexity of academic paper writing.

Details

Library Hi Tech, vol. 41 no. 5
Type: Research Article
ISSN: 0737-8831

Keywords

Article
Publication date: 17 April 2024

Bingwei Gao, Hongjian Zhao, Wenlong Han and Shilong Xue

This study proposes a predictive neural network model reference decoupling control method for the coupling problem between the leg joints of hydraulic quadruped robots, and…

Abstract

Purpose

This study proposes a predictive neural network model reference decoupling control method for the coupling problem between the leg joints of hydraulic quadruped robots, and verifies its decoupling effect..

Design/methodology/approach

The machine–hydraulic cross-linking coupling is studied as the coupling behavior of the hydraulically driven quadruped robot, and the mechanical dynamics coupling force of the robot system is controlled as the disturbance force of the hydraulic system through the Jacobian matrix transformation. According to the principle of multivariable decoupling, a prediction-based neural network model reference decoupling control method is proposed; each module of the control algorithm is designed one by one, and the stability of the system is analyzed by the Lyapunov stability theorem.

Findings

The simulation and experimental research on the robot joint decoupling control method is carried out, and the prediction-based neural network model reference decoupling control method is compared with the decoupling control method without any decoupling control method. The results show that taking the coupling effect experiment between the hip joint and knee joint as an example, after using the predictive neural network model reference decoupling control method, the phase lag of the hip joint response line was reduced from 20.3° to 14.8°, the amplitude attenuation was reduced from 1.82% to 0.21%, the maximum error of the knee joint coupling line was reduced from 0.67 mm to 0.16 mm and the coupling effect between the hip joint and knee joint was reduced from 1.9% to 0.48%, achieving good decoupling.

Originality/value

The prediction-based neural network model reference decoupling control method proposed in this paper can use the neural network model to predict the next output of the system according to the input and output. Finally, the weights of the neural network are corrected online according to the predicted output and the given reference output, so that the optimization index of the neural network decoupling controller is extremely small, and the purpose of decoupling control is achieved.

Details

Robotic Intelligence and Automation, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2754-6969

Keywords

Article
Publication date: 14 March 2024

Qiang Wen, Lele Chen, Jingwen Jin, Jianhao Huang and HeLin Wan

Fixed mode noise and random mode noise always exist in the image sensor, which affects the imaging quality of the image sensor. The charge diffusion and color mixing between…

Abstract

Purpose

Fixed mode noise and random mode noise always exist in the image sensor, which affects the imaging quality of the image sensor. The charge diffusion and color mixing between pixels in the photoelectric conversion process belong to fixed mode noise. This study aims to improve the image sensor imaging quality by processing the fixed mode noise.

Design/methodology/approach

Through an iterative training of an ergoable long- and short-term memory recurrent neural network model, the authors obtain a neural network model able to compensate for image noise crosstalk. To overcome the lack of differences in the same color pixels on each template of the image sensor under flat-field light, the data before and after compensation were used as a new data set to further train the neural network iteratively.

Findings

The comparison of the images compensated by the two sets of neural network models shows that the gray value distribution is more concentrated and uniform. The middle and high frequency components in the spatial spectrum are all increased, indicating that the compensated image edges change faster and are more detailed (Hinton and Salakhutdinov, 2006; LeCun et al., 1998; Mohanty et al., 2016; Zang et al., 2023).

Originality/value

In this paper, the authors use the iterative learning color image pixel crosstalk compensation method to effectively alleviate the incomplete color mixing problem caused by the insufficient filter rate and the electric crosstalk problem caused by the lateral diffusion of the optical charge caused by the adjacent pixel potential trap.

Details

Sensor Review, vol. 44 no. 2
Type: Research Article
ISSN: 0260-2288

Keywords

Article
Publication date: 27 June 2023

Nirodha Fernando, Kasun Dilshan T.A. and Hexin (Johnson) Zhang

The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial…

Abstract

Purpose

The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial forecasted budget to have transparency in transactions. Early cost estimating is challenging for Quantity Surveyors due to incomplete project details at the initial stage and the unavailability of standard cost estimating techniques for bridge projects. To mitigate the difficulties in the traditional preliminary cost estimating methods, there is a requirement to develop a new initial cost estimating model which is accurate, user friendly and straightforward. The research was carried out in Sri Lanka, and this paper aims to develop the artificial neural network (ANN) model for an early cost estimate of concrete bridge systems.

Design/methodology/approach

The construction cost data of 30 concrete bridge projects which are in Sri Lanka constructed within the past ten years were trained and tested to develop an ANN cost model. Backpropagation technique was used to identify the number of hidden layers, iteration and momentum for optimum neural network architectures.

Findings

An ANN cost model was developed, furnishing the best result since it succeeded with around 90% validation accuracy. It created a cost estimation model for the public sector as an accurate, heuristic, flexible and efficient technique.

Originality/value

The research contributes to the current body of knowledge by providing the most accurate early-stage cost estimate for the concrete bridge systems in Sri Lanka. In addition, the research findings would be helpful for stakeholders and policymakers to propose policy recommendations that positively influence the prediction of the most accurate cost estimate for concrete bridge construction projects in Sri Lanka and other developing countries.

Details

Journal of Financial Management of Property and Construction , vol. 29 no. 1
Type: Research Article
ISSN: 1366-4387

Keywords

Article
Publication date: 12 April 2024

Youwei Li and Jian Qu

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous…

Abstract

Purpose

The purpose of this research is to achieve multi-task autonomous driving by adjusting the network architecture of the model. Meanwhile, after achieving multi-task autonomous driving, the authors found that the trained neural network model performs poorly in untrained scenarios. Therefore, the authors proposed to improve the transfer efficiency of the model for new scenarios through transfer learning.

Design/methodology/approach

First, the authors achieved multi-task autonomous driving by training a model combining convolutional neural network and different structured long short-term memory (LSTM) layers. Second, the authors achieved fast transfer of neural network models in new scenarios by cross-model transfer learning. Finally, the authors combined data collection and data labeling to improve the efficiency of deep learning. Furthermore, the authors verified that the model has good robustness through light and shadow test.

Findings

This research achieved road tracking, real-time acceleration–deceleration, obstacle avoidance and left/right sign recognition. The model proposed by the authors (UniBiCLSTM) outperforms the existing models tested with model cars in terms of autonomous driving performance. Furthermore, the CMTL-UniBiCL-RL model trained by the authors through cross-model transfer learning improves the efficiency of model adaptation to new scenarios. Meanwhile, this research proposed an automatic data annotation method, which can save 1/4 of the time for deep learning.

Originality/value

This research provided novel solutions in the achievement of multi-task autonomous driving and neural network model scenario for transfer learning. The experiment was achieved on a single camera with an embedded chip and a scale model car, which is expected to simplify the hardware for autonomous driving.

Details

Data Technologies and Applications, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 10 November 2022

Xinxing Yin, Juan Chen, Wenxin Yu, Yuan Huang, Wenxiang Wei, Xinjie Xiang and Hao Yan

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural…

Abstract

Purpose

This study aims to improve the complexity of chaotic systems and the security accuracy of information encrypted transmission. Applying five-dimensional memristive Hopfield neural network (5D-HNN) to secure communication will greatly improve the confidentiality of signal transmission and greatly enhance the anticracking ability of the system.

Design/methodology/approach

Chaos masking: Chaos masking is the process of superimposing a message signal directly into a chaotic signal and masking the signal using the randomness of the chaotic output. Synchronous coupling: The coupled synchronization method first replicates the drive system to get the response system, and then adds the appropriate coupling term between the drive The synchronization error and the coupling term of the system will eventually converge to zero with time. The synchronization error and coupling term of the system will eventually converge to zero over time.

Findings

A 5D memristive neural network is obtained based on the original four-dimensional memristive neural network through the feedback control method. The system has five equations and contains infinite balance points. Compared with other systems, the 5D-HNN has rich dynamic behaviors, and the most unique feature is that it has multistable characteristics. First, its dissipation property, equilibrium point stability, bifurcation graph and Lyapunov exponent spectrum are analyzed to verify its chaotic state, and the system characteristics are more complex. Different dynamic characteristics can be obtained by adjusting the parameter k.

Originality/value

A new 5D memristive HNN is proposed and used in the secure communication

Details

Circuit World, vol. 50 no. 1
Type: Research Article
ISSN: 0305-6120

Keywords

Article
Publication date: 4 July 2023

Karim Atashgar and Mahnaz Boush

When a process experiences an out-of-control condition, identification of the change point is capable of leading practitioners to an effective root cause analysis. The change…

Abstract

Purpose

When a process experiences an out-of-control condition, identification of the change point is capable of leading practitioners to an effective root cause analysis. The change point addresses the time when a special cause(s) manifests itself into the process. In the statistical process monitoring when the chart signals an out-of-control condition, the change point analysis is an important step for the root cause analysis of the process. This paper attempts to propose a model approaching the artificial neural network to identify the change point of a multistage process with cascade property in the case that the process is modeled properly by a simple linear profile.

Design/methodology/approach

In practice, many processes can be modeled by a functional relationship rather than a single random variable or a random vector. This approach of modeling is referred to as the profile in the statistical process control literature. In this paper, two models based on multilayer perceptron (MLP) and convolutional neural network (CNN) approaches are proposed for identifying the change point of the profile of a multistage process.

Findings

The capability of the proposed models are evaluated and compared using several numerical scenarios. The numerical analysis of the proposed neural networks indicates that the two proposed models are capable of identifying the change point in different scenarios effectively. The comparative sensitivity analysis shows that the capability of the proposed convolutional network is superior compared to MLP network.

Originality/value

To the best of the authors' knowledge, this is the first time that: (1) A model is proposed to identify the change point of the profile of a multistage process. (2) A convolutional neural network is modeled for identifying the change point of an out-of-control condition.

Details

International Journal of Quality & Reliability Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0265-671X

Keywords

Article
Publication date: 3 November 2023

Xiaojie Xu and Yun Zhang

The Chinese housing market has gone through rapid growth during the past decade, and house price forecasting has evolved to be a significant issue that draws enormous attention…

32

Abstract

Purpose

The Chinese housing market has gone through rapid growth during the past decade, and house price forecasting has evolved to be a significant issue that draws enormous attention from investors, policy makers and researchers. This study investigates neural networks for composite property price index forecasting from ten major Chinese cities for the period of July 2005–April 2021.

Design/methodology/approach

The goal is to build simple and accurate neural network models that contribute to pure technical forecasts of composite property prices. To facilitate the analysis, the authors consider different model settings across algorithms, delays, hidden neurons and data spitting ratios.

Findings

The authors arrive at a pretty simple neural network with six delays and three hidden neurons, which generates rather stable performance of average relative root mean square errors across the ten cities below 1% for the training, validation and testing phases.

Originality/value

Results here could be utilized on a standalone basis or combined with fundamental forecasts to help form perspectives of composite property price trends and conduct policy analysis.

Details

Property Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0263-7472

Keywords

1 – 10 of over 2000