Search results

1 – 10 of over 2000
Article
Publication date: 25 November 2019

Shihua Lu, Jianqi Zhu, Dongyan Gao, Weiwei Chen and Xinjun Li

This study aims to show the importance of natural convection of supercritical fluid in an inclined cavity. The heat transfer performance of natural convection can be improved.

Abstract

Purpose

This study aims to show the importance of natural convection of supercritical fluid in an inclined cavity. The heat transfer performance of natural convection can be improved.

Design/methodology/approach

A model of an inclined cavity was set up to simulate the natural convection of supercritical fluid. The influence of inclined angles (30 to approximately 90°) and pressures (8 to approximately 12 MPa) are analyzed. To ascertain flow and heat transfer of supercritical fluid natural convection, this paper conducts a numerical investigation using the lattice Boltzmann method (LBM), which is proven to be precise and convenient.

Findings

The results show that the higher heat transfer performance can be obtained with an inclined angle of 30°. It is also presented that the heat transfer performance under pressure of 10 MPa is the best. In addition, common criterion number correlations of average Nusselt number are also fitted.

Originality/value

These study results can provide a theoretical reference for the study of heat transfer of supercritical fluid natural convection in engineering.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 June 2015

Kerim Yapici and Salih Obut

The purpose of this paper is to numerically investigate steady, laminar natural and mixed convection heat transfer in a two-dimensional cavity by using a finite volume…

Abstract

Purpose

The purpose of this paper is to numerically investigate steady, laminar natural and mixed convection heat transfer in a two-dimensional cavity by using a finite volume method with a fourth-order approximation of convective terms, with and without the presence of nanoparticles. Highly accurate benchmark results are also provided.

Design/methodology/approach

A finite volume method on a non-uniform staggered grid is used for the solution of two-dimensional momentum and energy conservation equations. Diffusion terms, in the momentum and energy equations, are approximated using second-order central differences, whereas a non-uniform four-point fourth-order interpolation (FPFOI) scheme is developed for the convective terms. Coupled mass and momentum conservation equations are solved iteratively using a semi-implicit method for pressure-linked equation method.

Findings

For the case of natural convection problem at high-Rayleigh numbers, grid density must be sufficiently high in order to obtain grid-independent results and capture reality of the physics. Heat transfer enhancement for natural convection is observed up to a certain value of the nanoparticle volume fraction. After that value, heat transfer deterioration is found with increasing nanoparticle volume fraction.

Originality/value

Developed a non-uniform FPFOI scheme. Highly accurate benchmark results for the heat transfer of Al2O3-water nanofluid in a cavity are provided.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 25 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 March 2018

Minh Tuan Nguyen, Abdelraheem M. Aly and Sang-Wook Lee

This paper aims to conduct numerical simulations of unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies and different boundary conditions…

Abstract

Purpose

This paper aims to conduct numerical simulations of unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies and different boundary conditions using the incompressible smoothed particle hydrodynamics (ISPH) method.

Design/methodology/approach

In the ISPH method, the pressure evaluation is stabilized by including both of divergence of velocity and density invariance in solving pressure Poisson equation. The authors prevented the particles anisotropic distributions by using the shifting technique.

Findings

The proposed ISPH method exhibited good performance in natural/mixed convection in a cavity with fixed, moving and free-falling rigid body. In natural convection, the authors investigated the effects of an inner sloshing baffle as well as fixed and moving circular cylinders on the heat transfer and fluid flow. The heated baffle has higher effects on the heat transfer rate compared to a cooled baffle. In the mixed convection, a free-falling circular cylinder over a free surface cavity and heat transfer in the presence of a circular cylinder in a lid-driven cavity are simulated. Fixed or moving rigid body in a cavity results in considerable effects on the heat transfer rate and fluid flow.

Originality/value

The authors conducted numerical simulations of unsteady natural/mixed convection in a cavity with fixed and moving rigid bodies and different boundary conditions using the ISPH method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 27 October 2021

Sayed Mahdi Naghavi and Ghanbar Ali Sheikhzadeh

The purpose of this study is the identification of the best method to apply the body force in the lattice Boltzmann method (LBM). In the simulation of mixed convection

62

Abstract

Purpose

The purpose of this study is the identification of the best method to apply the body force in the lattice Boltzmann method (LBM). In the simulation of mixed convection, especially for large Richardson number flows in a square cavity.

Design/methodology/approach

First, three methods for applying the body force were compared to each other in the LBM. Then, an LBM-based code was written in the FORTRAN language using these three methods. Next, that code was used to simulate natural/mixed convection in a two-dimensional cavity to evaluate the methods for applying the body force. Finally, the optimum way for applying the body force was used for the simulation of free convection heat transfer in a concentric annulus with Rayleigh number in a range of 1,000 to 50,000, and mixed convection heat transfer in a concentric annulus with Rayleigh number in a range of 10,000 to 50,000 and Reynolds number in a range of 100 to 400.

Findings

Mixed convection heat transfer was simulated in a two-dimensional cavity with Richardson number in a range of 0.0001 to 100. The results which were obtained in low Richardson number flows have shown good adaptation to the available data. However, the results of large Richardson number flows, for example, Ri = 100, have shown a significant difference to the available data. Investigations revealed that this difference was due to the method of applying the body force. Therefore, the choice of the best way to apply the body force was investigated. Finally, for the large Richardson number flows, the best method to apply the body force has been identified among the several techniques.

Originality/value

To the authors’ knowledge, the effects of methods for applying the body force were not investigated in the cavities mixed convection, even though there are numerous investigations conducted on mixed convection with the LBM. In this study, the effects of techniques to apply the body force were investigated in large Richardson number flows. Finally, the best method to apply the body force is distinguished between several techniques for the large Richardson number mixed convection flows.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 32 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 12 January 2010

Y. Guo, R. Bennacer, S. Shen, D.E. Ameziani and M. Bouzidi

The purpose of this paper is to apply the lattice Boltzmann method (LBM) to simulate mixed flow, which combines natural convection for temperature difference and forced…

Abstract

Purpose

The purpose of this paper is to apply the lattice Boltzmann method (LBM) to simulate mixed flow, which combines natural convection for temperature difference and forced convection for lid driven, in a two‐dimensional rectangular cavity over a wide range of aspect ratios (A), Rayleigh numbers (Ra) and Reynolds numbers (Re).

Design/methodology/approach

The LBM is applied to simulate the mixed flow. A multi‐relaxation technique was used successfully. A scale order analysis helped the understanding and predicting the overall heat transfer.

Findings

In the considered lid driven cavity, the Richardson number emerges as a measure of relative importance of natural and forced convection modes on the heat transfer. An expression of the overall heat transfer depending on the cavity slender (A) is deduced. The validity of the obtained expression was checked in mixed convection under the condition of low Richardson number (Ri) and the limitation condition was deduced.

Practical implications

This paper has implications for cooling system optimization and LBM technique development.

Originality/value

This paper presents a new cooling configuration, avoiding critical situation where the opposing effect induce weak heat transfer; and a stable and fast LBM approach allowing complex geometry treatment.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 20 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 October 2019

Nagesh Babu Balam and Akhilesh Gupta

Modelling accurately the transient behaviour of natural convection flow in enclosures been a challenging task because of a variety of numerical errors which have limited…

Abstract

Purpose

Modelling accurately the transient behaviour of natural convection flow in enclosures been a challenging task because of a variety of numerical errors which have limited achieving the higher order temporal accuracy. A fourth-order accurate finite difference method in both space and time is proposed to overcome these numerical errors and accurately model the transient behaviour of natural convection flow in enclosures using vorticity–streamfunction formulation.

Design/methodology/approach

Fourth-order wide stencil formula with appropriate one-sided difference extrapolation technique near the boundary is used for spatial discretisation, and classical fourth-order Runge–Kutta scheme is applied for transient term discretisation. The proposed method is applied on two transient case studies, i.e. convection–diffusion of a Gaussian Pulse and Taylor Vortex flow having analytical solution.

Findings

Error magnitude comparison and rate of convergence analysis of the proposed method with these analytical solutions establish fourth-order accuracy and prove the ability of the proposed method to truly capture the transient behaviour of incompressible flow. Also, to test the transient natural convection flow behaviour, the algorithm is tested on differentially heated square cavity at high Rayleigh number in the range of 103-108, followed by studying the transient periodic behaviour in a differentially heated vertical cavity of aspect ratio 8:1. An excellent comparison is obtained with standard benchmark results.

Research limitations/implications

The developed method is applied on 2D enclosures; however, the present methodology can be extended to 3D enclosures using velocity–vorticity formulations which shall be explored in future.

Originality/value

The proposed methodology to achieve fourth-order accurate transient simulation of natural convection flows is novel, to the best of the authors’ knowledge. Stable fourth-order vorticity boundary conditions are derived for boundary and external boundary regions. The selected case studies for comparison demonstrate not only the fourth-order accuracy but also the considerable reduction in error magnitude by increasing the temporal accuracy. Also, this study provides novel benchmark results at five different locations within the differentially heated vertical cavity of aspect ratio 8:1 for future comparison studies.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 3
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 25 February 2021

Leo Lukose and Tanmay Basak

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of…

Abstract

Purpose

The purpose of this paper is to address various works on mixed convection and proposes 10 unified models (Models 1–10) based on various thermal and kinematic conditions of the boundary walls, thermal conditions and/ or kinematics of objects embedded in the cavities and kinematics of external flow field through the ventilation ports. Experimental works on mixed convection have also been addressed.

Design/methodology/approach

This review is based on 10 unified models on mixed convection within cavities. Models 1–5 involve mixed convection based on the movement of single or double walls subjected to various temperature boundary conditions. Model 6 elucidates mixed convection due to the movement of single or double walls of cavities containing discrete heaters at the stationary wall(s). Model 7A focuses mixed convection based on the movement of wall(s) for cavities containing stationary solid obstacles (hot or cold or adiabatic) whereas Model 7B elucidates mixed convection based on the rotation of solid cylinders (hot or conductive or adiabatic) within the cavities enclosed by stationary or moving wall(s). Model 8 is based on mixed convection due to the flow of air through ventilation ports of cavities (with or without adiabatic baffles) subjected to hot and adiabatic walls. Models 9 and 10 elucidate mixed convection due to flow of air through ventilation ports of cavities involving discrete heaters and/or solid obstacles (conductive or hot) at various locations within cavities.

Findings

Mixed convection plays an important role for various processes based on convection pattern and heat transfer rate. An important dimensionless number, Richardson number (Ri) identifies various convection regimes (forced, mixed and natural convection). Generalized models also depict the role of “aiding” and “opposing” flow and combination of both on mixed convection processes. Aiding flow (interaction of buoyancy and inertial forces in the same direction) may result in the augmentation of the heat transfer rate whereas opposing flow (interaction of buoyancy and inertial forces in the opposite directions) may result in decrease of the heat transfer rate. Works involving fluid media, porous media and nanofluids (with magnetohydrodynamics) have been highlighted. Various numerical and experimental works on mixed convection have been elucidated. Flow and thermal maps associated with the heat transfer rate for a few representative cases of unified models [Models 1–10] have been elucidated involving specific dimensionless numbers.

Originality/value

This review paper will provide guidelines for optimal design/operation involving mixed convection processing applications.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 March 2019

Wei-Mon Yan, Hsu-Yang Teng, Chun-Han Li and Mohammad Ghalambaz

The electromagnetic field and cooling system of a high power switched reluctance motor (SRM) are studied numerically. The geometry of the motor and its main components are…

Abstract

Purpose

The electromagnetic field and cooling system of a high power switched reluctance motor (SRM) are studied numerically. The geometry of the motor and its main components are established using a computer-aided design software in the actual size. This study aims to evaluate the resulting thermal losses using the electromagnetic analysis of the motor.

Design/methodology/approach

In the electromagnetic analysis, the Joule’s loss in the copper wires of the coil windings and the iron losses (the eddy currents loss and the hysteresis loss) are considered. The flow and heat transfer model for the thermal analysis of the motor including the conduction in solid parts and convection in the fluid part is introduced. The magnetic losses are imported into the thermal analysis model in the form of internal heat generation in motor components. Several cooling system approaches were introduced, such as natural convection cooling, natural convection cooling with various types of fins over the motor casing, forced conviction air-cooled cooling system using a mounted fan, casing surface with and without heat sinks, liquid-cooled cooling system using the water in a channel shell and a hybrid air-cooled and liquid-cooled cooling system.

Findings

The results of the electromagnetics analysis show that the low rotational speed of the motor induces higher currents in coil windings, which in turn, it causes higher copper losses in SRM coil windings. For higher rotational speed of SRM, the core loss is higher than the copper loss is in SRM due to the higher frequency. An air-cooled cooling system is used for cooling of SRM. The results reveal when the rotational speed is at 4,000 rpm, the coil loss would be at the maximum value. Therefore, the coil temperature is about 197.9°C, which is higher than the tolerated standard temperature insulation material. Hence, the air-cooled system cannot reduce the temperature to the safe temperature limitation of the motor and guarantee the safe operation of SRM. Thus, a hybrid system of both air-cooled and liquid-cooled cooling system with mounting fins at the outer surface of the casing is proposed. The hybrid system with the liquid flow of Re = 1,500 provides a cooling power capable of safe operation of the motor at 117.2°C, which is adequate for standard insulation material grade E.

Originality/value

The electromagnetic field and cooling system of a high power SRM in the presence of a mounted fan at the rear of the motor are analyzed. The thermal analysis is performed for both of the air-cooled and liquid-cooled cooling systems to meet the cooling demands of the motor for the first time.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 5
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 14 November 2019

Leo Lukose and Tanmay Basak

The purpose of this paper is to study thermal (natural) convection in nine different containers involving the same area (area= 1 sq. unit) and identical heat input at the…

Abstract

Purpose

The purpose of this paper is to study thermal (natural) convection in nine different containers involving the same area (area= 1 sq. unit) and identical heat input at the bottom wall (isothermal/sinusoidal heating). Containers are categorized into three classes based on geometric configurations [Class 1 (square, tilted square and parallelogram), Class 2 (trapezoidal type 1, trapezoidal type 2 and triangle) and Class 3 (convex, concave and triangle with curved hypotenuse)].

Design/methodology/approach

The governing equations are solved by using the Galerkin finite element method for various processing fluids (Pr = 0.025 and 155) and Rayleigh numbers (103 ≤ Ra ≤ 105) involving nine different containers. Finite element-based heat flow visualization via heatlines has been adopted to study heat distribution at various sections. Average Nusselt number at the bottom wall ( Nub¯) and spatially average temperature (θ^) have also been calculated based on finite element basis functions.

Findings

Based on enhanced heating criteria (higher Nub¯ and higher θ^), the containers are preferred as follows, Class 1: square and parallelogram, Class 2: trapezoidal type 1 and trapezoidal type 2 and Class 3: convex (higher θ^) and concave (higher Nub¯).

Practical implications

The comparison of heat flow distributions and isotherms in nine containers gives a clear perspective for choosing appropriate containers at various process parameters (Pr and Ra). The results for current work may be useful to obtain enhancement of the thermal processing rate in various process industries.

Originality/value

Heatlines provide a complete understanding of heat flow path and heat distribution within nine containers. Various cold zones and thermal mixing zones have been highlighted and these zones are found to be altered with various shapes of containers. The importance of containers with curved walls for enhanced thermal processing rate is clearly established.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 30 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 9 November 2018

Yuan Ma, Rasul Mohebbi, Mohammad Mehdi Rashidi and Zhigang Yang

This paper aims to numerically investigate the natural convection heat transfer of multi-wall carbon nanotubes (MWCNTs)-water nanofluid in U-shaped enclosure equipped with…

233

Abstract

Purpose

This paper aims to numerically investigate the natural convection heat transfer of multi-wall carbon nanotubes (MWCNTs)-water nanofluid in U-shaped enclosure equipped with a hot obstacle by using the lattice Boltzmann method.

Design/methodology/approach

The combination of the three topics (U-shaped enclosure, different positions of the hot obstacle and MWCNTs-water nanofluid) is innovative in the present study. In total, 15 different positions of the hot obstacle have been arranged, and the effects of pertinent parameters such as Rayleigh numbers, the solid volume fraction of the MWCNTs nanoparticles on the flow field, temperature distribution and the rate of heat transfer inside the enclosure are also investigated.

Findings

It is found that the average Nusselt number increased by raising the Rayleigh number, and so did the nanoparticle solid volume fraction regardless the position of the hot obstacle. Moreover, enclosures where the hot obstacle is located at the bottom region proved to provide a better rate of heat transfer at high Rayleigh number (106). It is concluded that at a low Ra number (103-105), the higher heat transfer rate and Nu number will be obtained when the hot obstacle is located in the left or right channel.

Originality/value

In the literature, no trace of studying the natural convection of nanofluids in U-shaped enclosures with heating obstacles was found. Also, MWCNTs were less used as nanoparticles. As the natural convection of nanofluids in thermal engineering applications would expand the existing knowledge, the current researchers conducted a numerical study of the natural convection of Maxwell nanofluid with MWCNTs in U-shaped enclosure equipped with a hot obstacle by using lattice Boltzmann method.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 29 no. 1
Type: Research Article
ISSN: 0961-5539

Keywords

1 – 10 of over 2000