Search results

1 – 10 of over 28000
Article
Publication date: 19 September 2008

Jin Gang Gao, Yi Ping Wu, Han Ding and Nian Hong Wan

This paper aims to offer a convenient method to develop an oven recipe for a specific soldering profile in a reflow process. The method is devised to quickly achieve proper…

Abstract

Purpose

This paper aims to offer a convenient method to develop an oven recipe for a specific soldering profile in a reflow process. The method is devised to quickly achieve proper profile shape and heating factor Qη, a measure of success for high reliability of the solder joints reflowed.

Design/methodology/approach

An in‐depth analysis of the heating mechanism and some experiments of the reflow soldering process are performed to research on how to realize a specific shape reflow profile were conducted.

Findings

Heating mechanism analysis and experiments demonstrate that the combinatorial parameters based method is feasible to do thermal profiling.

Research limitations/implications

The mapping function among a particular configured PCBA, an oven used, a target reflow profile and an optimal range of the heating factor should be further established for fast and reliable production of reflow soldering.

Practical implications

Provides a methodology for designing an oven recipe for reflow soldering production.

Originality/value

An oven recipe can be quickly attained with the approach established in this paper, facilitating the formation of solder joints with high reliability during the reflow soldering process.

Details

Soldering & Surface Mount Technology, vol. 20 no. 4
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 1 August 2016

Lei Luo, Chenglong Wang, Lei Wang, Bengt Ake Sunden and Songtao Wang

The dimple is adopted into a pin fin wedge duct which is widely used in modern gas turbine vane cooling structure trailing edge region. The purpose of this paper is to study the…

Abstract

Purpose

The dimple is adopted into a pin fin wedge duct which is widely used in modern gas turbine vane cooling structure trailing edge region. The purpose of this paper is to study the effects of dimple depth and duct converging angle on the endwall heat transfer and friction factor in this pin fin wedge duct.

Design/methodology/approach

The study is carried out by using the numerical simulations. The diameter of dimples is the same as the pin fin diameter with an inline manner arrangement in relation to the pin fin. The ratio between dimple depth and dimple diameter is varied from 0 to 0.3 and the converging angle is ranging from 0° to 12.7°. The Reynolds number is between 10,000 and 50,000. Results of the endwall Nusselt number, friction factor, and flow structures are included. For convenience of comparison, the pin fin wedge duct with a converging angle of 12.7° without dimples is considered as the baseline.

Findings

It is found that the dimples can effectively enhance the endwall heat transfer due to the impingement on the dimple surface, reattachment downstream the dimple and recirculation in front of the pin fin leading edge. By increasing the converging angle, the heat transfer is also increased but with a large friction factor penalty. In addition, the heat transfer enhancement for deep depth cases is 1.57 times higher than that of the low depth case. The thermal performance indicates that the intensity of heat transfer enhancement depends upon the dimple depth and converging angle.

Originality/value

It suggests that the endwall heat transfer in a pin fin wedge duct can be increase by the adoption of dimples. The optimal dimple relative depth is 0.2 with low friction factor and high heat transfer performance.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 26 no. 6
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 5 February 2018

Ranganayakulu Chennu

The purpose of this study is to find the thermo-hydraulic performances of compact heat exchangers (CHE’s), which are strongly depending upon the prediction of performance of…

Abstract

Purpose

The purpose of this study is to find the thermo-hydraulic performances of compact heat exchangers (CHE’s), which are strongly depending upon the prediction of performance of various types of heat transfer surfaces such as offset strip fins, wavy fins, rectangular fins, triangular fins, triangular and rectangular perforated fins in terms of Colburn “j” and Fanning friction “ffactors.

Design/methodology/approach

Numerical methods play a major role for analysis of compact plate-fin heat exchangers, which are cost-effective and fast. This paper presents the on-going research and work carried out earlier for single-phase steady-state heat transfer and pressure drop analysis on CHE passages and fins. An analysis of a cross-flow plate-fin compact heat exchanger, accounting for the individual effects of two-dimensional longitudinal heat conduction through the exchanger wall, inlet fluid flow maldistribution and inlet temperature non-uniformity are carried out using a Finite Element Method (FEM).

Findings

The performance deterioration of high-efficiency cross-flow plate-fin compact heat exchangers have been reviewed with the combined effects of wall longitudinal heat conduction and inlet fluid flow/temperature non-uniformity using a dedicated FEM analysis. It is found that the performance deterioration is quite significant in some typical applications due to the effects of wall longitudinal heat conduction and inlet fluid flow non-uniformity on cross-flow plate-fin heat exchangers. A Computational Fluid Dynamics (CFD) program FLUENT has been used to predict the design data in terms of “j” and “f” factors for plate-fin heat exchanger fins. The suitable design data are generated using CFD analysis covering the laminar, transition and turbulent flow regimes for various types of fins.

Originality/value

The correlations for the friction factor “f” and Colburn factor “j” have been found to be good. The correlations can be used by the heat exchanger designers and can reduce the number of tests and modification of the prototype to a minimum for similar applications and types of fins.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 28 no. 2
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 26 February 2021

Subhasree Dutta, Somnath Bhattacharyya and Ioan Pop

The purpose of this study is to analyze the heat transfer and flow enhancement of an Al2O3-water nanofluid filling an inclined channel whose lower wall is embedded with…

Abstract

Purpose

The purpose of this study is to analyze the heat transfer and flow enhancement of an Al2O3-water nanofluid filling an inclined channel whose lower wall is embedded with periodically placed discrete hydrophobic heat sources. Formation of a thin depletion layer of low viscosity over each hydrophobic heated patch leads to the velocity slip and temperature jump condition at the interface of the hydrophobic patch.

Design/methodology/approach

The mixed convection of the nanofluid is analysed based on the two-phase non-homogeneous model. The governing equations are solved numerically through a control volume approach. A periodic boundary condition is adopted along the longitudinal direction of the modulated channel. A velocity slip and temperature jump condition are imposed along with the hydrophobic heated stripes. The paper has validated the present non-homogeneous model with existing experimental and numerical results for particular cases. The impact of temperature jump condition and slip velocity on the flow and thermal field of the nanofluid in mixed convection is analysed for a wide range of governing parameters, namely, Reynolds number (50 ≤ Re ≤ 150), Grashof number ( 103Gr5×104), nanoparticle bulk volume fraction ( 0.01φb0.05), nanoparticle diameter ( 30dp60) and the angle of inclination ( 60°σ60°).

Findings

The presence of the thin depletion layer above the heated stripes reduces the heat transfer and augments the volume flow rate. Consideration of the nanofluid as a coolant enhances the rate of heat transfer, as well as the entropy generation and friction factor compared to the clear fluid. However, the rate of increment in heat transfer suppresses by a significant margin of the loss due to enhanced entropy generation and friction factor. Heat transfer performance of the channel diminishes as the channel inclination angle with the horizontal is increased. The paper has also compared the non-homogeneous model with the corresponding homogeneous model. In the non-homogeneous formulation, the nanoparticle distribution is directly affected by the slip conditions by virtue of the no-normal flux of nanoparticles on the slip planes. For this, the slip stripes augment the impact of nanoparticle volume fraction compared to the no-slip case.

Originality/value

This paper finds that the periodically arranged hydrophobic heat sources on the lower wall of the channel create a significant augmentation in the volume flow rate, which may be crucial to augment the transport process in mini- or micro-channels. This type of configuration has not been addressed in the existing literature.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 31 no. 9
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 3 April 2017

Rajneesh Kumar, Anoop Kumar and Varun

The purpose of this computational fluid dynamics (CFD)-based study on semicircular rib-roughened equilateral triangular duct is to investigate heat transfer, friction factor and…

Abstract

Purpose

The purpose of this computational fluid dynamics (CFD)-based study on semicircular rib-roughened equilateral triangular duct is to investigate heat transfer, friction factor and thermohydraulic performance parameter. The analysis is carried out by simulating problem in ANSYS (Fluent). The Reynolds number in the study varies from 4,000 to 24,000. Nusselt number is calculated for different Reynolds number using various turbulent models available in ANSYS (Fluent) for a smooth duct and compared the results with the Dittus–Boelter correlation.

Design/methodology/approach

The analysis has been done by solving basic fluid governing equations (continuity, momentum and energy) by using finite volume method (FVM). The semicircular ribs were fabricated on the absorber plate. The constant amount of heat flux is applied on the absorber plate, whereas other two walls are made adiabatic. The semi-implicit method for pressure linked equations (SIMPLE) algorithm is used with pressure–velocity-coupled disretization to estimate the results. The selection of turbulent model has been done on the basis of Nusselt number prediction in the smooth duct.

Findings

The renormalization-group kε model predicts the Nusselt number more accurately as compared to standard kε model, standard kω model, shear stress transport (SST) kω and realizable kε model in the Reynolds number ranges from 4,000 to 24,000 with a ± 5.5% deviation from Dittus–Boelter equation for smooth duct. The maximum thermo-hydraulic performance is observed of the order of 1.7 for arrangement which has a relative roughness height of 0.067 and relative roughness pitch of 7.5 at higher Reynolds Number of 24,000.

Originality/value

Although, many experimental studies are available in the area of rib-roughened ducts, the present study is based on CFD analysis of semicircular rib-roughened equilateral triangular duct and the results are predicted in terms of Nusselt number, friction factor and thermohydraulic performance parameter. Moreover, the predicted result of Nusselt number and friction factor is validated by comparing with Dittus–Boelter correlation and modified Blasius equation, respectively. This advantage made Fluent a powerful tool for analyzing the internal fluid flow through roughened ducts.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 27 no. 4
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 8 April 2016

Mazen M. Abu-Khader

The purpose of this paper is to update a previous review work (Abu-khader, 2006, Heat & Mass Transfer, Vol. 43 No. 2, pp. 123-134) and highlight the new research methods on the…

Abstract

Purpose

The purpose of this paper is to update a previous review work (Abu-khader, 2006, Heat & Mass Transfer, Vol. 43 No. 2, pp. 123-134) and highlight the new research methods on the use of twisted tapes and the application of different configurations of these tape inserts. Also, based on a vast collection of experimental data in open literature, generalized Nusselt number (Nu) and friction factor (f) correlations as the function of twist ratio were developed with maximum error around ± 15 per cent. The present paper examines several case studies which apply complex configurations of twisted inserts.

Design/methodology/approach

Using the developed correlations, an equivalent Nusselt number and friction factor of typical type twist insert were generated which achieved the same performance of each complex configuration.

Findings

The open literature contains large number of wired and complex configurations of twisted tape inserts. Their applicability to real industrial use is questionable.

Originality/value

This paper presents an up-to-date review on the use of twisted tape in research, highlights the different tape configurations and proposes general correlations for traditional twisted tape inserts.

Details

World Journal of Engineering, vol. 13 no. 2
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 1 February 2016

Attila Géczy, Bíborka Kvanduk, Balazs Illes and Gábor Harsányi

The paper aims to present a comparative study of various thermocouple (TC) attaching methods for the proper measurement of soldering temperature profiling during vapour phase…

Abstract

Purpose

The paper aims to present a comparative study of various thermocouple (TC) attaching methods for the proper measurement of soldering temperature profiling during vapour phase soldering (VPS). The heat transfer process during VPS is different from common methods, while the required heat for reflow is provided by the condensation. The condensate is a flowing layer on the board, where the dynamic behaviour also affects the local conditions on the surfaces. Temperature measurements based on TCs are also affected this way; it is important to investigate the process for deeper understanding.

Design/methodology/approach

Bare printed circuit boards (PCBs) were prepared for standard K-Type TCs attachment with industry standard materials: kapton polyimide tape, aluminium tape, SMD adhesive and high-temperature solder (HTS). Heating experiments were performed in a batch-type VPS oven with Galden LS240 fluid and fixed oven parameters.

Findings

According to the specific attachment requirements, HTS and Alu-tape are the suggested methods for better profiling reliability and repeatability. Alu-tape is the preferred all-around method, for fast, exchangeable, cheap, reliable and repeatable profiling in a VPS oven. It was presented that the heating factor (Q?) gives more reliable comparison overview; the time period-based comparisons may be affected by the thermal inertia, while heating factor also includes temperature conditions at the given time points.

Originality/value

The paper presents the reliability of the presented methods for VPS and present suggestions for the use of different TC ends and attaching materials during condensation heating of the PCBs. Also a new approach on profiling data evaluation based on the heating factor is presented and suggested for wider use.

Details

Soldering & Surface Mount Technology, vol. 28 no. 1
Type: Research Article
ISSN: 0954-0911

Keywords

Article
Publication date: 12 February 2024

Boyi Li, Miao Tian, Xiaohan Liu, Jun Li, Yun Su and Jiaming Ni

The purpose of this study is to predict the thermal protective performance (TPP) of flame-retardant fabric more economically using machine learning and analyze the factors

Abstract

Purpose

The purpose of this study is to predict the thermal protective performance (TPP) of flame-retardant fabric more economically using machine learning and analyze the factors affecting the TPP using model visualization.

Design/methodology/approach

A total of 13 machine learning models were trained by collecting 414 datasets of typical flame-retardant fabric from current literature. The optimal performance model was used for feature importance ranking and correlation variable analysis through model visualization.

Findings

Five models with better performance were screened, all of which showed R2 greater than 0.96 and root mean squared error less than 3.0. Heat map results revealed that the TPP of fabrics differed significantly under different types of thermal exposure. The effect of fabric weight was more apparent in the flame or low thermal radiation environment. The increase in fabric weight, fabric thickness, air gap width and relative humidity of the air gap improved the TPP of the fabric.

Practical implications

The findings suggested that the visual analysis method of machine learning can intuitively understand the change trend and range of second-degree burn time under the influence of multiple variables. The established models can be used to predict the TPP of fabrics, providing a reference for researchers to carry out relevant research.

Originality/value

The findings of this study contribute directional insights for optimizing the structure of thermal protective clothing, and introduce innovative perspectives and methodologies for advancing heat transfer modeling in thermal protective clothing.

Details

International Journal of Clothing Science and Technology, vol. 36 no. 2
Type: Research Article
ISSN: 0955-6222

Keywords

Article
Publication date: 28 March 2023

Amir Rezazad Bari, Mohammad Zabetian Targhi and Mohammad Mahdi Heyhat

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been…

Abstract

Purpose

This study aims to examine the effect of a combination of hybrid pin-fin patterns on a heat sink's performance using numerical techniques. Also, flow characteristics have been studied, such as secondary flow formation and flow-wall interaction.

Design/methodology/approach

In this study, the effect of hybrid arrangements of elliptical and hexagonal pin-fins with different distribution percentages on flow characteristics and performance evaluation criteria in laminar flow was investigated. Ansys-Fluent software solves the governing equations using the finite volume method. Also, the accuracy of obtained results was compared with the experimental results of other similar papers.

Findings

The results of this study highlighted that hybrid arrangements show higher overall performance than single pin-fin patterns. Among the hybrid arrangements, case 3 has the highest values of performance evaluation criteria, that is, 1.84 in Re = 900. The results revealed that, with the instantaneous change in the pattern from elliptic to hexagonal, the secondary flow increases in the cross-sectional area of the channels, and the maximum velocity in the cross-section of the channel increases. The important advantages of case 3 are its highest overall performance and a lower chip surface temperature of up to about 2% than other hybrid patterns.

Originality/value

Prior research has shown that in the single pin-fin pattern, the cooling power at the end of the heat sink decreases with increasing fluid temperature. Also, a review of previous studies showed that existing papers had not investigated hybrid pin-fin patterns by considering the effect of changing distribution percentages on overall performance, which is the aim of this paper.

Details

International Journal of Numerical Methods for Heat & Fluid Flow, vol. 33 no. 7
Type: Research Article
ISSN: 0961-5539

Keywords

Article
Publication date: 1 March 1982

Erdener Kaynak and Lois Stevenson

The purpose of this study is to examine the salient selection criteria and purchase behaviour of Atlantic Canadians when buying a single‐detached house. It considers features of…

Abstract

The purpose of this study is to examine the salient selection criteria and purchase behaviour of Atlantic Canadians when buying a single‐detached house. It considers features of the house and economic and locational factors deemed important by consumers in making the home buying decision.

Details

Management Research News, vol. 5 no. 1
Type: Research Article
ISSN: 0140-9174

1 – 10 of over 28000