Search results

1 – 3 of 3
Article
Publication date: 12 August 2020

Amjid Ali, Teruya Minamoto, Umer Saeed and Mujeeb Ur Rehman

The purpose of this paper is to obtain a numerical scheme for finding numerical solutions of linear and nonlinear fractional differential equations involving ψ-Caputo derivative.

Abstract

Purpose

The purpose of this paper is to obtain a numerical scheme for finding numerical solutions of linear and nonlinear fractional differential equations involving ψ-Caputo derivative.

Design/methodology/approach

An operational matrix to find numerical approximation of ψ-fractional differential equations (FDEs) is derived. This study extends the method to nonlinear FDEs by using quasi linearization technique to linearize the nonlinear problems.

Findings

The error analysis of the proposed method is discussed in-depth. Accuracy and efficiency of the method are verified through numerical examples.

Research limitations/implications

The method is simple and a good mathematical tool for finding solutions of nonlinear ψ-FDEs. The operational matrix approach offers less computational complexity.

Originality/value

Engineers and applied scientists may use the present method for solving fractional models appearing in applications.

Article
Publication date: 30 June 2021

Umer Saeed

The purpose of the present work is to propose a wavelet method for the numerical solutions of Caputo–Hadamard fractional differential equations on any arbitrary interval.

Abstract

Purpose

The purpose of the present work is to propose a wavelet method for the numerical solutions of Caputo–Hadamard fractional differential equations on any arbitrary interval.

Design/methodology/approach

The author has modified the CAS wavelets (mCAS) and utilized it for the solution of Caputo–Hadamard fractional linear/nonlinear initial and boundary value problems. The author has derived and constructed the new operational matrices for the mCAS wavelets. Furthermore, The author has also proposed a method which is the combination of mCAS wavelets and quasilinearization technique for the solution of nonlinear Caputo–Hadamard fractional differential equations.

Findings

The author has proved the orthonormality of the mCAS wavelets. The author has constructed the mCAS wavelets matrix, mCAS wavelets operational matrix of Hadamard fractional integration of arbitrary order and mCAS wavelets operational matrix of Hadamard fractional integration for Caputo–Hadamard fractional boundary value problems. These operational matrices are used to make the calculations fast. Furthermore, the author works out on the error analysis for the method. The author presented the procedure of implementation for both Caputo–Hadamard fractional initial and boundary value problems. Numerical simulation is provided to illustrate the reliability and accuracy of the method.

Originality/value

Many scientist, physician and engineers can take the benefit of the presented method for the simulation of their linear/nonlinear Caputo–Hadamard fractional differential models. To the best of the author’s knowledge, the present work has never been proposed and implemented for linear/nonlinear Caputo–Hadamard fractional differential equations.

Article
Publication date: 17 July 2023

Umer Saeed

The purpose of the present work is to introduce a wavelet method for the solution of linear and nonlinear psi-Caputo fractional initial and boundary value problem.

Abstract

Purpose

The purpose of the present work is to introduce a wavelet method for the solution of linear and nonlinear psi-Caputo fractional initial and boundary value problem.

Design/methodology/approach

The authors have introduced the new generalized operational matrices for the psi-CAS (Cosine and Sine) wavelets, and these matrices are successfully utilized for the solution of linear and nonlinear psi-Caputo fractional initial and boundary value problem. For the nonlinear problems, the authors merge the present method with the quasilinearization technique.

Findings

The authors have drived the orthogonality condition for the psi-CAS wavelets. The authors have derived and constructed the psi-CAS wavelets matrix, psi-CAS wavelets operational matrix of psi-fractional order integral and psi-CAS wavelets operational matrix of psi-fractional order integration for psi-fractional boundary value problem. These matrices are successfully utilized for the solutions of psi-Caputo fractional differential equations. The purpose of these operational matrices is to make the calculations faster. Furthermore, the authors have derived the convergence analysis of the method. The procedure of implementation for the proposed method is also given. For the accuracy and applicability of the method, the authors implemented the method on some linear and nonlinear psi-Caputo fractional initial and boundary value problems and compare the obtained results with exact solutions.

Originality/value

Since psi-Caputo fractional differential equation is a new and emerging field, many engineers can utilize the present technique for the numerical simulations of their linear/non-linear psi-Caputo fractional differential models. To the best of the authors’ knowledge, the present work has never been introduced and implemented for psi-Caputo fractional differential equations.

Details

Engineering Computations, vol. 40 no. 6
Type: Research Article
ISSN: 0264-4401

Keywords

1 – 3 of 3