Search results

1 – 10 of 20
Article
Publication date: 28 May 2021

Fan Bao, Kaiyu Zhang, Zhengrong Zhou, Wenli Zhang, Xiao Cai and Lin Zhang

The purpose of this paper is to demonstrate the effect of δ-ferrite on the susceptibility to hydrogen embrittlement of type 304 stainless steel in hydrogen gas environment.

Abstract

Purpose

The purpose of this paper is to demonstrate the effect of δ-ferrite on the susceptibility to hydrogen embrittlement of type 304 stainless steel in hydrogen gas environment.

Design/methodology/approach

The mechanical properties of as-received and solution-treated specimens were investigated by the test of tensile and fatigue crack growth (FCG) in 5 MPa argon and hydrogen.

Findings

The presence of δ-ferrite reduced the relative elongation and the relative reduction area (H2/Ar) of 304 stainless steel, indicating that δ-ferrite increased the susceptibility of hydrogen embrittlement in 304 stainless steel. Moreover, δ-ferrite promoted the fatigue crack initiation and propagation at the interface between δ-ferrite and austenite. The FCG tests were used to investigate the effect of δ-ferrite on the FCG rate in hydrogen gas environment, and it was found that δ-ferrite accelerated the FCG rate, which was attributed to rapid diffusion and accumulation of hydrogen around the fatigue crack tip through δ-ferrite in high-pressure hydrogen gas environment.

Originality/value

The dependence of the susceptibility to hydrogen embrittlement on δ-ferrite was first investigated in type 304 steel in hydrogen environment with high pressures, which provided the basis for the design and development of a high strength, hydrogen embrittle-resistant austenitic stainless steel.

Details

Anti-Corrosion Methods and Materials, vol. 68 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 September 2018

Ankur V. Bansod, Awanikumar P. Patil and Sourabh Shukla

The purpose of the study is to evaluate Cr-Mn ASS weld using different heat inputs for its microstructure, mechanical properties and electrochemical behavior. The microstructural…

Abstract

Purpose

The purpose of the study is to evaluate Cr-Mn ASS weld using different heat inputs for its microstructure, mechanical properties and electrochemical behavior. The microstructural examination used optical and scanning electron microscopy. It was observed that ferrite content decreases with increasing heat input. The length of dendrites, inter-dendritic space and volume of lathy ferrite increase with increasing heat input. The increasing heat input caused grain coarsening near the fusion boundary and produced wider heat-affected zone (HAZ). It also decreases hardness and tensile strength. This is attributed to formation of more δ ferrite in the weld. The electrochemical evaluation suggested that the δ ferrite helps in improving the pitting potential in 3.5 per cent NaCl solution saturated with CO2. Whereas in 0.5-M H2SO4 + 0.003-M NaF solution, higher passivation current density was observed because of dissolution of dferrite. The interphase corrosion resistance decreased with increasing heat input.

Design/methodology/approach

The Cr-Mn austenitic stainless steel or low-nickel ASS was procured in form of 3-mm sheets in rolled condition. The tungsten inert gas welding was performed at three different heat inputs (100 A, 120 A and 140 A), argon as shielding gas with a flow rate of 15 L/min. Different welded regions were observed using optical microscope and scanning electron microscope. Electrochemicals test were performed in solutions containing 3.5 per cent NaCl with saturated CO2 solution and 0.5 M sulfuric acid + 0.003 M NaF at a scan rate of 0.1667 mV/s at room temperature (30 °C ± 1 °C) using a potentiostat.

Findings

The test steel Cr-Mn ASS is suitable with the selected electrode (308 L) and it produces no defects. Vermicular ferrite and lathy ferrite form in welds of various heat inputs. The increase in heat input reduces the formation of lathy ferrite. The width of HAZ and un-mixed zone increases with increase in heat input. The weld zone of low heat input (LHI) has the highest hardness and tensile strength because of higher δ ferrite content and small grain size in the weld zone. The hardness at high heat input (HHI) is found to be lowest because of grain coarsening in the weld. With increase in δ ferrite, the pitting resistance increases. In 0.5-M sulfuric acid + 0.003-M NaF, the increase in ferrite content reduces the passivation current density. Interphase corrosion resistance increases with increase in δ ferrite content as higher per cent degree of sensitization was observed in LHI welds as compared to medium heat input and HHI welds.

Originality/value

This work focuses on welding of ASS by tungsten inert gas welding at different heat inputs. Welding is a critical process for joining metals in most of the fabrication industries and proper heat input is required for getting desired microstructure in the weld metal. This would highly affect the strength and corrosion behavior of the alloy. This paper would give an understanding of how the change in heat input by tungsten inert gas welding affects the microstructural and corrosion behavior in the weld metal.

Details

Anti-Corrosion Methods and Materials, vol. 65 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 5 May 2015

Zhiling Peng and Heming Zhao

– An engine component made from 1Cr18Ni9Ti alloy to be used underwater was the subject of the present research investigation.

Abstract

Purpose

An engine component made from 1Cr18Ni9Ti alloy to be used underwater was the subject of the present research investigation.

Design/methodology/approach

A stereomicroscope, a metallurgical microscope, a microhardness tester and an electron energy dispersion spectroscope were used to observe cross-sections of the alloy’s microstructure at different locations, as well as its overall corrosion behavior.

Findings

The corrosion of the 1Cr18Ni9Ti alloy, attributed to welding, cold processing and plastic deformation processes, was investigated together with an analysis of the chemical composition of the corrosion products and microsclerometry of the cross-sections. It was revealed that defects such as shrinkage cavities and porosity, often were observed to occur in the welding fusion zone. During cold processing treatments, work hardening was induced in the surface layer. Corrosion products consisted of oxides, chlorides and sulfides, with oxides as the dominant component. The high chromium content of d-ferrite had resulted in chromium depletion in nearby phase boundaries, which had led to oxidation and corrosion at these boundaries. As the electrode potential of d-ferrite is different to that of austenite, it is possible for a galvanic couple to develop between the two phases, leading to differential rates of corrosion attack.

Originality/value

Methods are proposed to improve corrosion resistance by improving the quality of the surface overlaying processes and by adopting special surface treatment techniques.

Details

Anti-Corrosion Methods and Materials, vol. 62 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 22 August 2022

Fulvio Lavecchia, Alessandro Pellegrini and Luigi Maria Galantucci

This paper aims to provide a comparison between the mechanical performance and microstructural aspects of stainless steel 17-4 PH processed using, respectively, two technologies…

Abstract

Purpose

This paper aims to provide a comparison between the mechanical performance and microstructural aspects of stainless steel 17-4 PH processed using, respectively, two technologies: atomic diffusion additive manufacturing (ADAM) and metal fused filament fabrication (MFFF).

Design/methodology/approach

Different tensile specimens have been printed using an industrial system and a consumer three-dimensional (3D) printer, varying two main 3D printing parameters. Mechanical and microstructural tests are executed to make a comparison between these two technologies and two different feedstock material, to identify the main differences.

Findings

These 3D printing processes make parts with different surface quality, mechanical and microstructural properties. The parts, printed by the industrial system (ADAM), showed lower values of roughness, respect those produced using the 3D consumer printer (MFFF). The different sintering process parameters and the two debinding methods (catalytic or solvent based) affect the parts properties such as porosity, microstructure, grain size and amount of δ-ferrite. These proprieties are responsible for dissimilar tensile strength and hardness values. With the aim to compare the performances among traditional metal additive technology, MFFF and ADAM, a basic analysis of times and costs has been done.

Originality/value

The application of two metal extrusion techniques could be an alternative to other metal additive manufacturing technologies based on laser or electron beam. The low cost and printing simplicity are the main drivers of the replacements of these technologies in not extreme application fields.

Article
Publication date: 21 March 2008

V. Valasamudram, S.S. Mohamed Nazirudeen, P. Chandramohan and K.P. Thenmozhi

The main purpose of this paper is to produce high‐nitrogen martensitic stainless steels (HNMSS) using a conventional induction furnace with better mechanical properties and to…

Abstract

Purpose

The main purpose of this paper is to produce high‐nitrogen martensitic stainless steels (HNMSS) using a conventional induction furnace with better mechanical properties and to improve the properties by thermo‐mechanical treatment (TMT).

Design/methodology/approach

Production of two types of HNMSS alloys with Chromium – 8.22 and 15.84 wt% was carried out using a conventional melting furnace. The theoretical nitrogen solubility of the produced alloys was calculated and compared with the actual nitrogen solubility of the alloys. The produced alloys were subjected to TMT, characterized by hardness measurement, tensile testing micro examinations in the as cast, hardened, TMT treated and TMT hardened and tempered conditions.

Findings

The actual nitrogen solubility achieved in the HNMSS specimens was in agreement with the calculated theoretical nitrogen solubility using thermodynamic relationships. Thermo‐mechanically treated specimens exhibited the break‐up and refinement of the original coarse cast structure by repeated recrystallization as fine grain size in the austenitic condition and reduced proportion of residual deformed δ ferrite. Thermo‐mechanically treated, hardened and tempered specimens showed higher hardness up to 525 VHN, with strength and toughness.

Research limitations/limitations

In the conventional melting process, purging nitrogen into the melt and increasing the percentage of nitrogen is the primary limitation and retaining the same into the solution during thermo‐mechanical treatment is the secondary limitation.

Originality/value

Work on melting of nitrogenated steels using controlled atmospheric conditions with special equipment was carried out earlier. This practice cannot be adopted on a commercial basis, where mass production is the prime requirement. Therefore, the uniqueness of this paper lies in communicating the melting practice of HNMSS using a conventional induction furnace followed by the optimum TMT. This takes the production and TMT of HNMSS into the commercial casting industry for mass production.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 30 September 2013

D. Katherasan, Jiju V. Elias, P. Sathiya and A. Noorul Haq

The purpose of this study is to optimize the process parameters (wire feed rate (F), voltage (V), welding speed (S) and torch angle (A)) in order to obtain the optimum bead…

Abstract

Purpose

The purpose of this study is to optimize the process parameters (wire feed rate (F), voltage (V), welding speed (S) and torch angle (A)) in order to obtain the optimum bead geometry (bead width (W), reinforcement (R) and depth of penetration (P)), considering the ranges of the process parameters using evolutionary algorithms, namely genetic algorithm (GA) and simulated annealing (SA) algorithm.

Design/methodology/approach

The modeling of welding parameters in flux cored arc welding process using a set of experimental data and regression analysis, and optimization using GA and SA algorithm.

Findings

The adequate mathematical model was developed. The multiple objectives were optimized satisfactorily by the GA and SA algorithms. The feasible solution results are very closer to the optimized results and the percentage error was found to be negligibly small.

Originality/value

The optimal welding parameters were identified in order to increase the productivity. The welding input parameters effect was found.

Details

Multidiscipline Modeling in Materials and Structures, vol. 9 no. 3
Type: Research Article
ISSN: 1573-6105

Keywords

Article
Publication date: 18 November 2019

Vinoth Kumar M. and Balasubramanian V.

Super 304HCu super austenitic stainless steel tubes containing 2.3 to 3 (Wt.%) of copper (Cu) is used in superheaters and reheater tubings of nuclear power plants. In general…

Abstract

Purpose

Super 304HCu super austenitic stainless steel tubes containing 2.3 to 3 (Wt.%) of copper (Cu) is used in superheaters and reheater tubings of nuclear power plants. In general, austenitic stainless steels welded by conventional constant current gas tungsten arc welding (CC-GTAW) produce coarse columnar grains, alloy segregation and may result in inferior mechanical properties. Pulsed current gas tungsten arc welding (PC-GTAW) can control the solidification structure by altering the prevailing thermal gradients in the weld pool.

Design/methodology/approach

Super 304HCu tubes of Ø 57.1 mm and the wall thickness of 3.5 mm were autogenously welded using CC and PC-GTAW processes. Joints are characterized using optical microscopy, electron microscopy, energy dispersive spectroscopy and electron backscatter diffraction (EBSD) techniques. Hot tensile properties of the weld joints were evaluated and correlated with their microstructural features.

Findings

Current pulsing in GTAW has resulted in minimal eutectic film segregation, lower volume % of delta ferrite and appreciable improvement in tensile properties than CC-GTAW joints.

Originality/value

The EBSD boundary map and inverse pole orientation map of Super 304HCu weld joints evidence the grain refinement and much frequent high angle grain boundaries achieved using weld current pulsing.

Details

World Journal of Engineering, vol. 16 no. 6
Type: Research Article
ISSN: 1708-5284

Keywords

Article
Publication date: 14 July 2020

Yang Ke and Jun Xiong

This paper aims to introduce a novel concept of a double-wire feed (DWF) to alleviate heat accumulation and improve the cooling rate of the molten pool in gas tungsten arc…

237

Abstract

Purpose

This paper aims to introduce a novel concept of a double-wire feed (DWF) to alleviate heat accumulation and improve the cooling rate of the molten pool in gas tungsten arc (GTA)-based additive manufacturing (AM), in which the former wire is fed into the arc and the latter wire is melt by the molten pool.

Design/methodology/approach

The microstructure, phase composition and mechanical properties of 308 L stainless steel components built by single-wire feed (SWF) AM and DWF-AM are compared, and the differences are analyzed in detail.

Findings

The microstructures for both wire feeding modes include δ and γ phases. Compared with the SWF-AM, the sample fabricated in the DWF-AM exhibits finer microstructure, and the microstructure in the middle region is transformed from columnar grains to cellular grains. Microhardness of the sample produced in the DWF-AM is higher than the SWF-AM. In comparison to the SWF-AM, the tensile strength of the specimen fabricated using the DWF-AM reaches 571 MPa and increases by 16.14%.

Originality/value

This study proposes a novel concept of the DWF-AM to reduce heat accumulation as well as enhance the cooling rate of the molten pool, and improved mechanical properties of the 308 L stainless steel component are obtained.

Details

Rapid Prototyping Journal, vol. 26 no. 9
Type: Research Article
ISSN: 1355-2546

Keywords

Article
Publication date: 19 December 2023

Chetan Tembhurkar, Sachin Ambade, Ravinder Kataria, Jagesvar Verma and Abhijeet Moon

This paper aims to examine dissimilar joints for various applications in chemical, petrochemical, oil, gas, shipbuilding, defense, rail and nuclear industry.

40

Abstract

Purpose

This paper aims to examine dissimilar joints for various applications in chemical, petrochemical, oil, gas, shipbuilding, defense, rail and nuclear industry.

Design/methodology/approach

This study examined the effects of cold metal transfer welding on stainless steel welds for 316L austenitic and 430 ferritic dissimilar welds with ER316L, ER309L and without (autogenous) fillers. The microstructural observation was done with an optical microscope. The mechanical test was done to reveal the strength, hardness and toughness of the joint. The electrochemical polarization tests were done to reveal intergranular and pitting corrosion in the dissimilar joints.

Findings

This microstructural study shows the presence of austenitic and ferritic phases with vermicular ferrite for ER309L filler weld, and for ER316L filler weld specimen shows predominately martensitic phase in the weld region, whereas the autogenous weld shows lathy ferrite mixed with martensitic phase. Mechanical test results indicated that filler welded specimen (ER316L and ER309L) has relatively higher strength and hardness than the autogenous weld, whereas ER316L filler weld exhibited the highest impact toughness than ER309L filler weld and lowest in autogenous weld. The electrochemical corrosion results displayed the highest degree of sensitization (DOS) in without filler welded specimen (45.62%) and lower in case of filler welded specimen ER309L (4.95%) and least in case of ER316L filler welded specimen (3.51%). The high DOS in non-filler welded specimen is correlated with the chromium carbide formation. The non-filler welded specimen shows the highest pitting corrosion attack as compared to the ER316L filler weld specimen and relatively better in ER309L filler welded specimen. The highest pitting corrosion resistance is related with the high chromium content in ER309L composition.

Originality/value

This experimental study is original and conducted with 316L and 430 stainless steel with ER316L, ER309 and without fillers, which will help the oil, shipbuilding and chemical industries.

Details

Anti-Corrosion Methods and Materials, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 January 2020

Md. Rumman Ul Ahsan, Ali Newaz Mohammad Tanvir, Taylor Ross, Ahmed Elsawy, Min-Suk Oh and Duck Bong Kim

Wire + arc additive manufacturing (WAAM) uses existing welding technology to make a part from metal deposited in an almost net shape. WAAM is flexible in that it can use multiple…

1104

Abstract

Purpose

Wire + arc additive manufacturing (WAAM) uses existing welding technology to make a part from metal deposited in an almost net shape. WAAM is flexible in that it can use multiple materials successively or simultaneously during the manufacturing of a single component.

Design/methodology/approach

In this work, a gas metal arc welding (GMAW) based wire + arc additive manufacturing (WAAM) system has been developed to use two material successively and fabricate bimetallic additively manufactured structure (BAMS) of low carbon steel and AISI 316L stainless steel (SS).

Findings

The interface shows two distinctive zones of LCS and SS deposits without any weld defects. The hardness profile shows a sudden increase of hardness at the interface, which is attributed to the migration of chromium from the SS. The tensile test results show that the bimetallic specimens failed at the LCS side, as LCS has lower strength of the materials used.

Originality/value

The microstructural features and mechanical properties are studied in-depth with special emphasis on the bimetallic interface.

Details

Rapid Prototyping Journal, vol. 26 no. 3
Type: Research Article
ISSN: 1355-2546

Keywords

1 – 10 of 20