Search results

1 – 1 of 1
Article
Publication date: 16 August 2019

Carlos Couto, Élio Maia, Paulo Vila Real and Nuno Lopes

The purpose of this paper is to assess whether the adaptation to fire of current proposals/design methodologies at normal temperature is capable of producing accurate predictions…

Abstract

Purpose

The purpose of this paper is to assess whether the adaptation to fire of current proposals/design methodologies at normal temperature is capable of producing accurate predictions of resistance for the out-of-plane stability of tapered beams.

Design/methodology/approach

The adaptation of these methodologies to fire has been done by accounting for the reduction in steel material properties with the temperature. Results were then compared to FEM calculations by performing GMNIA analyses to determine the ultimate strength of the numerical models and to ascertain the validity and accuracy of the adapted methodologies.

Findings

Although all methodologies produce safe results at normal temperatures, only the general method is recommended for the safety verification at elevated temperatures, although the data points were overly conservative. This investigation demonstrates the need of proper and accurate design methods for tapered beams at elevated temperatures, which should be the subject of future developments.

Research limitations/implications

The research in this paper is limited to the adaptation of existing room temperature design methods to fire. Therefore, possible assumptions made during the conception of the initial formulae, which may be valid exclusively for 20ºC, may have been disregarded.

Originality/value

For the time being, design methodologies for the safety check of tapered beams for the case of fire are inexistent. This paper investigates the adaptation of existing room temperature design to the fire situation by providing insights on their accuracy level, as well as on how to proceed. Finally, a safe design methodology for tapered beams in case of fire is provided until improved design methods are developed.

Details

Journal of Structural Fire Engineering, vol. 10 no. 4
Type: Research Article
ISSN: 2040-2317

Keywords

Access

Year

Content type

Article (1)
1 – 1 of 1